
MASTER THESIS

Bc. Petr Stefan

Java Performance Testing
For The Masses

Department of Distributed and Dependable Systems

Supervisor of the master thesis: prof. Ing. Petr Tůma, Dr.
Study programme: Computer Science

Study branch: ISS

Prague 2018

I declare that I carried out all work on this master thesis independently, and only
with the cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In Prague on May 8, 2018 Bc. Petr Stefan

i

ii

Title: Java Performance Testing For The Masses

Author: Bc. Petr Stefan

Department: Department of Distributed and Dependable Systems

Supervisor: prof. Ing. Petr Tůma, Dr., Department of Distributed and Depend-
able Systems

Abstract: Java is a major platform for performance sensitive applications. Unit
testing of functionality has already become a common practice in software de-
velopment; however, the amount of projects employing performance tests is sub-
stantially lower. A comprehensive study in combination with a short survey
among developers is made in order to examine the current situation in open-
source projects written in Java. Results show that suitable tools for measure-
ments exist, but they are hard to use or the outputs are difficult to understand.
To improve the situation in favor of performance evaluation a set of user friendly
tools for collecting, comparing and visualizing the data is designed, implemented,
and verified on a sample Java project.

Keywords: Java, performance, SPL, JMH, unit testing, software development
process

iii

iv

I would first like to thank my thesis supervisor prof. Petr Tůma, who supported
the research with aspiring guidance, numerous valuable ideas and comments and
a good deal of constructive criticism. I greatly appreciate his involvement that
resulted in publishing the part of the thesis as a conference paper.

I would also like to express my very profound gratitude to my parents and to
my girlfriend for supporting me throughout my study. Finally, I highly value all
the efforts of my professors and my Alma Mater for all the knowledge I hope to
use and evolve in my professional life. Thank you.

v

vi

Contents

Introduction 3

1 Analysis 5
1.1 Unit Testing of Functionality . 6

1.1.1 JUnit . 6
1.1.2 TestNG . 7

1.2 Practice of Unit Testing . 7
1.3 Performance Testing . 8

1.3.1 Caliper . 9
1.3.2 ContiPerf . 10
1.3.3 Japex . 10
1.3.4 JMH . 11
1.3.5 JUnitPerf . 12

1.4 Practice of Performance Testing 13
1.4.1 GitHub Statistics . 13
1.4.2 Developer Survey . 17
1.4.3 Survey Results . 18

1.5 Goals Revisited . 20
1.6 Related Work . 21

2 Tools Design 23
2.1 Performance Tests . 23
2.2 Storing Data . 24
2.3 Testing Performance Changes . 28
2.4 Data Visualization . 30

2.4.1 Client . 31
2.4.2 Server . 33

3 Practical Validation 35
3.1 Ease of Integration . 35
3.2 Test Configuration . 37
3.3 Regressions in Released Versions 39
3.4 Tracking Down A Performance Issue 41

3.4.1 Small Change Investigation 41
3.4.2 Insight Into Bigger Performance Drops 44

Conclusion 47

Bibliography 49

List of Abbreviations 53

Appendix A JMH Usage Survey 55

1

Appendix B User Documentation 59
B.1 Quick Start . 59
B.2 Maven Plugin . 61

B.2.1 The Data Saver Goal . 62
B.2.2 The SPL Annotation Goal 63
B.2.3 The SPL Extractor Goal 63
B.2.4 The Evaluator Fetcher Goal 64
B.2.5 Compilation . 64

B.3 SPL Formula Evaluator . 64
B.3.1 Console Interface . 65
B.3.2 Library . 66
B.3.3 Documentation . 66
B.3.4 Compilation . 66

B.4 Perf Data Visualizer . 66
B.4.1 Interface and Functions . 67
B.4.2 Graphing Area . 68
B.4.3 Compilation . 69

B.5 Practical Tips . 69

Appendix C Visualizer API 71
C.1 Methods . 71
C.2 Description . 71
C.3 Models . 74

Appendix D Reviewer Demo 75

2

Introduction
Java is a major platform for performance-sensitive applications. Among major
examples are frameworks for distributed computing – Hadoop1 and Flink2, or
container servers – Tomcat3 and Glassfish4. Maintaining good performance over
time is therefore often important. One way to achieve this is continuous perfor-
mance testing.

However, performance testing of Java programs is far from trivial, because
the characteristics of the underlying runtime make the performance behavior
more complex than that of languages compiled to native code of the target CPU
architecture [1]. Common factors affecting such behavior are the nondeterminism
of the garbage collector, thread scheduling, JIT (Just-In-Time) compilation or
VM (Virtual Machine) optimizations based on time sampling of the running code.
To avoid incorrect conclusions about performance, a suitable testing methodology
with statistically rigorous data processing must be used.

Common wisdom of software development is that systematic unit testing of
the source code helps reach and maintain high quality of the application. This
statement is validated by some of the major software companies [2] as well as
by analysis of known failures caused by insufficient testing [3]. There is evidence
that earlier testing can reduce costs to repair the discovered flaws [4].

A similar statement holds for the performance testing of the applications [5].
Early testing and fine tuning the applications often leads to massive performance
gains, but anecdotal evidence suggests that performance testing is not as common
as unit testing of functionality. The adoption rate of the supporting tools and
frameworks is not as high as we expect despite the fact that many exists for over
a decade.

Performance testing can be done on several levels of granularity, including
evaluation of architectural performance models [6], system performance testing
and (micro)benchmarking. This work is interested only in the benchmarking since
the benchmarking frameworks are similar to the frameworks for unit testing of
functionality. This could lead to a better understanding of the tools by the
developers that already use the unit testing frameworks.

The term “microbenchmark” is nowadays overused and its meaning is a little
blurred. We go along with Ehliar and Liu [7] who define microbenchmarks as
performance indicators of typical tasks for a given application. Usually it is
a specific part of a larger application, but in a few situations it can also be
a standalone application itself.

Since the performance testing tools are not much used globally, we want to
understand the causes of this state and try to overcome the obstacles to help the
developers with faster adoption of these tools. Papers [8] and [9] give a general
overview of the topic. The main problems seems to be more expensive test ex-
ecution (in terms of time), issues with testing automation, complicated setup of
the tools and lack of knowledge for data interpretation.

1http://hadoop.apache.org/
2https://flink.apache.org/
3http://tomcat.apache.org/
4https://javaee.github.io/glassfish/

3

http://hadoop.apache.org/
https://flink.apache.org/
http://tomcat.apache.org/
https://javaee.github.io/glassfish/

These problems point to a list of topics that need to be addressed in this
thesis. We set four goals in order to provide a complete performance testing
assistance for the developers. Fulfilling the goals involve solving problems in the
following activities:

• writing performance tests,
• gathering and storing the data,
• automated evaluation of performance changes in the data,
• visualizing the data.

To confirm that real projects have matching issues with the presented goals,
a study mining Java open-source code repositories on GitHub is provided. A sup-
plementary developer survey gives us their ideas about testing, but as shown by
Daka and Fraser [10], the responses are not necessarily accurate.

We believe that most of the goals can be addressed by developing a set
of simple-to-use tools to make performance testing of Java projects more user
friendly and hopefully more popular for the software developers. This set of tools
includes a build system plugin for running the tests and saving their outputs,
a tool for computing statistical differences between the performance data to find
regressions, and a tool for interactive visualization of the measured data to give
the users a hands-on experience with the actual performance of the application.

To confirm that the proposed tools are usable in real world applications and
actually bring an improvement in the testing workflow, we have chosen a sample
project and used the tools to verify that using the tools during the development
could potentially find hidden issues or find existing issues sooner than without
any tool support.

The thesis is structured as follows. In Chapter 1 we present the state-of-the-
art tools for unit testing of functionality and performance testing and their usage
in open-source projects hosted on GitHub. Together with the supplementary
developer survey, we find possible problems in the performance testing workflow
and design a framework to help reduce them. The end of the chapter addresses
the related work. Chapter 2 presents the design and implementation choices for
our framework. Chapter 3 presents the practical validation of the framework on
a sample Java project. The conclusion summarizes our results and discusses the
future development and adoption process of the presented framework.

Appendix A shows the transcript of the form used for our developer survey.
The user documentation of the presented framework is in Appendix B. Note that
this part of the thesis does not follow the strict rules of academic text and instead
uses more common style suitable for writing the user documentation. Appendix C
provides the API documentation for the interaction between the evaluation and
the visualization components. Appendix D contains a description of the demo
prepared for the reviewer of this thesis.

4

1. Analysis
To improve the process of performance testing by microbenchmarks, we want to
understand the present testing workflow with its strengths and weaknesses first.
The data about contemporary and past workflow patterns can be obtained in
several ways:

• scanning sources of open-source projects,
• surveying open-source developers,
• surveying software companies,
• analyzing questions about performance on developer websites.

Open-source projects allow everyone to view their source code and investigate
the used frameworks in detail. This allows us to collect the relevant data about
how the performance testing frameworks are used in many applications. The
major platform for open-source projects is GitHub1, but GitLab2, BitBucket3 or
SourceForge4 also have a significant user base. Our choice is to use the biggest
platform available. GitHub provides a web API to find projects matching given
criteria, so projects using the Java language can be programmatically discovered
and saved for further processing.

The results of a developer survey depend on the willingness of the developers
to answer the questionnaire. A crucial part is to target only those developers who
made or altered some of the performance tests. They can provide sensible results
about how they are testing the performance, how are the results processed, why
were the used tools chosen, etc. The questionnaire needs to be fairly short in
order not to take too much time from the developers. We made a small survey
to complement our knowledge about the open-source testing and to support the
results from the GitHub projects.

In case of a company survey, we do not believe that we could entice more than
a few software corporations to provide meaningful responses with quality results
to meet the demands of this text. Similar imprecise results are expected from
analyzing questions on Q&A websites such as StackOverflow5, where the quality
differs extensively as shown by paper [11]. Thus these two types of analysis are
not pursued further.

A serious question concerns the validity of our results on a wider scale if
proprietary code is omitted. We guess that the proprietary code could be slightly
more tested, but it is hard to get real evidence for comparison. Open-source
software development has some specifics [12] compared to commercial closed-
source development. The developer team of an open-source project is mostly
distributed, without personal contact, and the contributors select the features
they want to work on depending on their preferences and skills. They also have
more reviewed code, better modularity, faster releases of minor versions and more
unified coding standards. Traditional development tends to happen in centralized

1https://github.com/
2https://about.gitlab.com/
3https://bitbucket.org/product
4https://sourceforge.net/
5https://stackoverflow.com/

5

https://github.com/
https://about.gitlab.com/
https://bitbucket.org/product
https://sourceforge.net/
https://stackoverflow.com/

teams lead by the project managers with precise design, good documentation or
a fixed schedule of releases. There is no data for direct comparison of overall
performance for these two types of project development.

To understand the concept of modern tools for unit and performance testing,
the representatives of the most used frameworks in the industry are presented
with brief description and a usage example.

1.1 Unit Testing of Functionality

The most important aspect of every program is its correct functionality. Programs
giving wrong results or crashing could be very harmful in some cases, not just
useless. Unit testing can prevent these situations by taking every piece of code
and testing its outputs for common and corner cases of inputs. The advantage
of this approach is that the tests are executed for every new change in the code,
so the bugs introduced in these changes are found instantly. Unit testing became
popular and formed a standard for most projects.

With the unit testing movement other projects appear to help developers keep
code correctness in mind. Most notably there are the continuous integration (CI)
servers, which usually build the code after every push to a remote repository
and execute the test code. The responsible developer is notified about failures
and further actions can take place as well, for example automatic deployment is
blocked. Popular representatives are Travis CI6, AppVeyor7 or Jenkins CI Server8.

Only two existing unit testing frameworks for Java from the list became more
popular – TestNG and JUnit. The following sections give a brief overview of both
of them.

1.1.1 JUnit

JUnit9 is probably the most popular unit testing framework ever. The original
idea of xUnit frameworks comes from SUnit (Smalltalk unit testing framework),
but the most popular representative is the Java version. Many other frameworks
even for different programming languages are inspired by JUnit and try to follow
a similar user interface. The tests are defined by a simple annotation, @Test, and
in many cases this is the only requirement for the test. Inside each test, a block
of code is executed and the results are checked against the expected values using
assertX functions (assertTrue, assertEquals, etc.).

Usually, the JUnit framework is supported by the IDE, where there are but-
tons to run one or all tests and the outputs are displayed directly. Command-line
use is also possible. The very active development of this project since 2000 re-
sulted in version 5 in November 2017. An example test is in Listing 1.1.

6https://travis-ci.org/
7https://www.appveyor.com/
8https://jenkins.io/
9http://junit.org/

6

https://travis-ci.org/
https://www.appveyor.com/
https://jenkins.io/
http://junit.org/

1 class StandardTests {
2 @BeforeAll
3 static void initAll () {}
4

5 @BeforeEach
6 void init () {}
7

8 @Test
9 void succeedingTest () {}

10

11 @Test
12 void failingTest () {
13 fail("a failing test");
14 }
15

16 @Test
17 @Disabled ("for demonstration purposes ")
18 void skippedTest () { /* not executed */ }
19

20 @AfterEach
21 void tearDown () {}
22

23 @AfterAll
24 static void tearDownAll () {}
25 }

Listing 1.1: JUnit example test

1.1.2 TestNG
TestNG10 is a unit testing framework heavily inspired by JUnit and extended
with support for additional features like functional testing, integration testing or
end-to-end testing. The testing process can be started from plugins for popular
IDEs, providing visual results, or directly from the ANT, Maven and Gradle
command-line build systems. The default output formats are HTML and XML,
but newer versions provide the Reporter API for third-party output generators
as well. TestNG is still in active development which started in 2010.

The unit tests are configured by multiple annotations. An example testing
class is in Listing 1.2.

1.2 Practice of Unit Testing
There are several practices for writing and managing the unit tests. For all of them
an initial setup of testing framework of a choice is required, but both presented
frameworks follows simple steps to integrate themselves into the variety of Java
build systems. The next thing is to write some code and the corresponding unit
tests. There are two main methods when to write the actual tests.

The test-driven development (TDD) means that tests are written prior to
application code, which can help to design the interfaces as well as achieve high
coverage of the unit tests. The other way is to write the tests after the application

10http://testng.org/doc/

7

http://testng.org/doc/

1 public class SimpleTest {
2 @BeforeClass
3 public void setUp () {
4 // code that will be invoked when
5 // this test is instantiated
6 }
7

8 @Test(groups = { "fast" })
9 public void aFastTest () {

10 System .out. println ("Fast test");
11 }
12

13 @Test(groups = { "slow" })
14 public void aSlowTest () {
15 System .out. println ("Slow test");
16 }
17 }

Listing 1.2: TestNG example test

code which seems to have no obvious benefits, but it is the option used more in
our opinion.

When both the application code and the tests are ready, they have to be
evaluated. Commonly used examples are numerous IDE integration plugins which
provide the interface for running the tests and a visual representation of the
results. Another popular way is to use the remote CI server, where the code is
regularly sent (for instance after push to version system) and evaluated in a text
console. In case of failure, the reports are delivered to the author of the last
change via email.

These two methods can be combined so the developer usually checks the
correct functionality of his/her changes before a commit, and the CI server verifies
the correctness after the push to the remote repository. The complete execution
of all unit tests of functionality should take at most a few minutes.

At this point the testing environment and the evaluation workflow are set
and every new code change is processed in the same way as described above. To
sum up, the testing pipeline consists of writing the test and the actual code (in
arbitrary order), testing own changes locally and pushing them to the remote
repository, which may trigger a check in the CI server.

1.3 Performance Testing

Practical performance of Java programs can be observed in two different ways –
by monitoring the running application in a real deployment with real workload,
or by writing synthetic tests for smaller pieces of code and monitoring predefined
criteria (execution time, consumed memory, etc.). The first method gets more
real results [13], because it tracks the whole application running in its target en-
vironment working on real data. The measurements can run for a long time, even
for the whole application runtime, but on the downside a performance problem
may not be easy to track down to the code. On the other hand microbenchmark-

8

ing results tend to be more artificial, so drawing conclusions from them has to be
done with care.

The described monitoring scenario relies on profiler tools. The JVM provides
support for such tools with the Java Management Extensions (JMX)11. This
technology provides information about performance and resource consumption
on both local and remote applications running on the Java platform. Some of the
popular tools are JConsole12 (a graphical tool included in the Java Development
Kit (JDK)), JProfiler13 or VisualVM14. The profilers are often paid and target
the enterprise environment. This kind of tools is more suitable for monitoring
server applications with long uptime, than for other application types.

Synthetic microbenchmarks are an alternative to profiling. They target only
small pieces of code at a time, running in a loop on predefined data sets. This
approach helps tracking performance during the development process when each
code change can be immediately tested by the corresponding microbenchmark
and every little difference is captured. However, the testing data is often different
from the real world production data and the workload could be different as well,
so it is possible that the results do not fully correspond with the real performance
of the application.

This thesis explores only microbenchmarking because the tests run relatively
short time, thus they can be run more often during the development process. They
are often similar to the unit tests and also they tend to give more stable results
than profiling. A description of some of the most popular microbenchmarking
frameworks follows.

1.3.1 Caliper

Caliper15 is a tool focused on Java microbenchmarks being developed at Google
since 2008. It provides an integration with an online results archive, which can
help users with interpreting the results, as well serve as a guide describing the best
practices for the measurements. Android support allows running the tests directly
on mobile devices, but it may not work in the latest version of Caliper. The
simplest Caliper benchmark according to the official web tutorial is in Listing 1.3.

1 public static class Benchmark1 {
2 @Benchmark
3 void timeNanoTime (int reps) {
4 for (int i = 0; i < reps; i++) {
5 System . nanoTime ();
6 }
7 }
8 }

Listing 1.3: Caliper example test

11http://www.oracle.com/technetwork/articles/java/javamanagement-140525.html
12http://openjdk.java.net/tools/svc/jconsole/
13https://www.ej-technologies.com/products/jprofiler/overview.html
14https://visualvm.github.io/
15https://github.com/google/caliper/wiki/ProjectHome

9

http://www.oracle.com/technetwork/articles/java/javamanagement-140525.html
http://openjdk.java.net/tools/svc/jconsole/
https://www.ej-technologies.com/products/jprofiler/overview.html
https://visualvm.github.io/
https://github.com/google/caliper/wiki/ProjectHome

The usual way to include Caliper into a project is through a Maven de-
pendency. After compilation, the measurements are started by the provided
com.google.caliper.runner.CaliperMain main class. The results are auto-
matically uploaded to the web archive and saved to the local filesystem in JSON
format. The overall measurement time is controlled by the framework itself. The
Maven dependency snippet for Caliper is in Listing 1.4.

1 <dependency >
2 <groupId >com. google . caliper </ groupId >
3 <artifactId >caliper </ artifactId >
4 <version >v1.0-beta -2</ version >
5 </ dependency >

Listing 1.4: Caliper Maven dependency

1.3.2 ContiPerf
ContiPerf16 is a utility for writing performance tests alike regular unit tests. The
performance tests are extensions of the JUnit framework tests and the same code
can be used for both purposes. Supported annotations can define measurement
properties and expectations for the results. An HTML report with static data
visualization is generated for every invocation of the measurements and the raw
values can be exported in the CSV format. The utility was developed between
2010 and 2015. There is no evidence of any activity since then.

A simple ContiPerf benchmark is in Listing 1.5. The tool can be easily inte-
grated with the Maven build system. The dependency snippet for executing the
framework at the test target is in Listing 1.6.

1 public class SimpleTest {
2 @Rule
3 public ContiPerfRule i = new ContiPerfRule ();
4

5 @Test
6 @PerfTest (invocations = 1000 , threads = 20)
7 @Required (max = 1200 , average = 250)
8 public void sleepAWhile () throws Exception {
9 Thread .sleep (100);

10 }
11 }

Listing 1.5: ContiPerf example test

1.3.3 Japex
Japex17 is another tool for writing microbenchmarks with a philosophy similar
to the JUnit framework. But Japex is not a direct extension of JUnit. The
test suite configuration is defined in an XML file, the output includes HTML

16http://databene.org/contiperf
17https://github.com/kohsuke/japex

10

http://databene.org/contiperf
https://github.com/kohsuke/japex

1 <dependency >
2 <groupId >org. databene </ groupId >
3 <artifactId >contiperf </ artifactId >
4 <version >2.4.3 </ version >
5 <scope >test </scope >
6 </ dependency >

Listing 1.6: ContiPerf Maven dependency

reports with charts and timestamped XML results. For each tested algorithm,
a separate Java “driver class” has to exist including the code with the control
methods such as prepare, warmup, run, or finish. This tool was developed
in 2005 to 2011 and now seems to be abandoned. Even the project website
https://japex.dev.java.net/ is left inaccessible.

A sample configuration for a test suite with two algorithms (XDriver, YDri-
ver) and two test cases (with different arguments) is presented in Listing 1.7. The
tests can be executed by the Maven plugin, which can be added as a dependency
to the pom.xml file as shown in Listing 1.8.

1 <testSuite name=" Sample Test Suite" xmlns="http: // www.sun.com/
japex/ testSuite ">

2 <param name=" libraryDir " value="lib"/>
3 <param name="japex. classPath " value="${ libDir }/ classes "/>
4 <param name="japex. warmupTime " value="10"/>
5 <param name="japex. runTime " value="10"/>
6

7 <driver name=" XDriver ">
8 <param name=" Description " value=" Driver for X parser "/>
9 <param name="japex. DriverClass " value="com.foo. XDriver "/>

10 </ driver >
11 <driver name=" YDriver ">
12 <param name=" Description " value=" Driver for Y parser "/>
13 <param name="japex. driverClass " value="com.foo. YDriver "/>
14 </ driver >
15

16 <testCase name="file1.xml">
17 <param name="japex. inputFile " value="data/file1.xml"/>
18 </ testCase >
19 <testCase name="file2.xml">
20 <param name="japex. inputFile " value="data/file2.xml"/>
21 </ testCase >
22 </ testSuite >

Listing 1.7: Japex example test configuration

1.3.4 JMH
JMH18 is a Java harness for writing and analysing microbenchmarks. It is a part of
the OpenJDK project and is supported by the Oracle company. The performance
tests are written like JUnit tests, only a different set of annotations is used.
A sample benchmark is shown in Listing 1.9.

18http://openjdk.java.net/projects/code-tools/jmh/

11

https://japex.dev.java.net/
http://openjdk.java.net/projects/code-tools/jmh/

1 <dependency >
2 <groupId >com.sun.japex </ groupId >
3 <artifactId >japex -maven - plugin </ artifactId >
4 <version >1.2.4 </ version >
5 <scope >test </scope >
6 </ dependency >

Listing 1.8: Japex Maven dependency

1 public class Benchmarks {
2 @Benchmark
3 @BenchmarkMode (Mode. Throughput)
4 @OutputTimeUnit (TimeUnit . SECONDS)
5 public void measureThrgpt () throws InterruptedException {
6 TimeUnit . MILLISECONDS .sleep (100);
7 }
8 }

Listing 1.9: JMH example test

The test configuration is highly customizable using annotations or command-
line arguments at runtime. A recommended benchmarking project is created
from the JMH Maven archetype. This procedure sets up proper dependencies
and allows building a self-contained JAR bundle with all of the tests and the
JMH code. This could be useful for measurements on a separate computer.

The results can be saved in a human-readable text or in one of the machine
readable formats, CSV, SCSV, and JSON. Third-party data from optional JVM
profilers can be included as secondary metrics into the results. It is possible to use
a custom main method and a Java API to tweak the framework, but the flexibility
and simple uniform usage would be lost. This project started in 2013 and has
been actively developed since. A community of users created many plugins for
Gradle, Jenkins, IntelliJ IDEA, and other projects.

1.3.5 JUnitPerf

JUnitPerf19 is an extension of the JUnit 3 testing framework which uses the dec-
orator pattern to extend the original API. Unit testing methods are executed as
timed performance tests through a wrapper class defining other properties. This
encapsulation allows using the same code for both unit and performance testing.
However, it does not support important features like warmup or multithreaded
testing. The project was developed in 2008 to 2010 and now is not maintained.
The suggested alternative is Caliper.

The project is compiled using Apache Ant. The installation instructions sug-
gest downloading a compiled JAR file and placing it on the classpath. Each test
suite has a separate main method for execution. The results are printed to the
standard output in human-readable format. An example timed test is shown in
Listing 1.10.

19https://github.com/clarkware/junitperf

12

https://github.com/clarkware/junitperf

1 public class ExampleTimedTest {
2 public static Test suite () {
3 long maxElapsedTime = 1000;
4 Test testCase =
5 new ExampleTestCase (" testOneSecondResponse ");
6 Test timedTest = new TimedTest (testCase , maxElapsedTime);
7 return timedTest ;
8 }
9

10 public static void main(String [] args) {
11 junit. textui . TestRunner .run(suite ());
12 }
13 }

Listing 1.10: JUnitPerf example test

1.4 Practice of Performance Testing
Compared to unit testing of functionality, there are no established procedures
that describe the common workflow of performance testing. We collect a large
survey to overcome the lack of data, and create our own fresh statistics from
number of existing projects.

The results presented in this section were originally presented as the confer-
ence paper [14] as joint effort of all its authors.

1.4.1 GitHub Statistics
To evaluate usage of the introduced tools, we made a Python crawler script for
GitHub. It uses the GitHub Search API v320 through the PyGithub library21.
For further processing, a list of all Java repositories was created. To eliminate the
many nearly empty repositories (excluding forks gives approximately 2.4 million
repositories), we perform a query searching for at least two forks and nonempty
size. Because the API is limited to return a maximum of one thousand items at
a time, we use a binary search algorithm based on forks, stars and project size.
A total of 99 019 such repositories was found.

There is a threat that the repository list might not be complete. Limitation
of the API allows only ten requests per minute, so the overall crawling takes
about one day in which new repositories may be created or existing repositories
deleted. Also, there is no way to ensure the completeness of the list, because the
partial response indicator flag is set to a negative answer when the results are
incomplete or the results are complete and the search query timed out. However,
small differences from the exact state are not important for our summarizing
study.

The original study was run in 2016. Since then, we have attempted to update
the results, however, the GitHub Search API gives us wrong results compared to
our previous findings. We have also tried to analyze the GitHub Archive22 col-
lecting metadata of all repositories in The Google Cloud, but we managed to only

20https://developer.github.com/v3/search/
21https://github.com/PyGithub/PyGithub
22https://www.gharchive.org/

13

https://developer.github.com/v3/search/
https://github.com/PyGithub/PyGithub
https://www.gharchive.org/

get 387 720 Java repositories (excluding forks), which is an order of magnitude
less than the first search. We are not able to find the cause of the observed diver-
gence, so we present the data from our first search, which are the most complete
we could get.

Every repository from the list was cloned (about 3 TB of data) and analyzed
for usage patterns of the presented tools and frameworks. The Java sources
were parsed and checked for imported packages and used annotations, listed in
Table 1.1. This approach gives reliable results, because importing the package
is required for using each of the frameworks. Although obscure practices could
invoke tests without import statements, the number of users of these techniques
is estimated as very low. Also, importing the package does not necessarily mean
that the project is using proper benchmarking, but it is unlikely that there are
many projects with this kind of unused dependency. The number of tests in each
project is calculated by counting the used test markers of the framework.

Framework Base package Test marker
JUnit org.junit @Test
TestNG org.testng @Test

Caliper com.google.caliper @Benchmark
ContiPerf org.databene.contiperf @PerfTest
Japex com.sun.japex JapexDriverBase
JMH org.openjdk.jmh @Benchmark,

@GenerateMicroBenchmark
JUnitPerf com.clarkware.junitperf TimedTest, LoadTest

Table 1.1: Packages and annotations used to detect the unit and performance
testing frameworks. Each framework is detected by the presence of the base
package, one test marker counts as presence of one test.

Table 1.2 gives an overview of the repositories that use one of the surveyed
frameworks. The data shows that the most popular framework is JMH, but still
with only 278 projects, which means that the framework is very rare. Because
other performance frameworks have at least one order of magnitude less projects,
it is sensible to further focus on JMH as the most used representative. On the
other hand, unit testing of functionality is quite popular as about a third of all
projects adopted one of the two presented frameworks.

In addition to the established benchmarking tools, we searched for a propri-
etary method of benchmarking. Proprietary benchmarking means custom time
measurements of a piece of code where the system clock is queried twice in one
block of code and the difference of these values is calculated. However, these hits
are just potential performance tests where further human classification is required
to filter out false positives.

When speaking of proprietary benchmarking, a manual classification of all
projects is not feasible and an automated script cannot categorize the reason of
querying the clock, so a random set of 1000 projects was picked and manually
examined. From this set, 332 projects are querying the system clock using one of
the functions System.nanoTime(), System.currentTimeMillis() and variants
of ThreadMXBean.get*Time(). To reduce the error ratio, the classification was

14

Framework Repositories Relative usage
JUnit 4 30871 31.177 %
TestNG 2053 2.073 %
Caliper 12 0.012 %
ContiPerf 17 0.017 %
Japex 52 0.053 %
JMH 278 0.281 %
JUnitPerf 11 0.011 %
Total 99019 100 %

Table 1.2: Java test framework usage on GitHub.

made independently by two people who assigned each project a category. Then,
similar categories from both people were merged (about 70% of their answers
matched). The results are presented in Table 1.3. Proprietary benchmarking is
used in about 3.4% of all the examined projects, which is low on global scale,
but also an order of magnitude more than the JMH framework. On top of that,
other categories may be connected to tracking performance for example in logs,
but this cannot be considered as unit testing of performance.

Usage Count 99 % CI
Timeout handling 125 99 – 154
Logging of durations 133 107 – 163
Querying calendar time 122 97 – 151
Event scheduling, GUI 89 67 – 115
Randomization, unique naming 65 47 – 88
Proprietary benchmarking 34 21 – 52
Custom timer infrastructure 29 17 – 46

Table 1.3: Usage of System.nanoTime and System.currentTimeMillis.
Projects that span multiple categories are counted multiple times.

The main problem of proprietary benchmarking is that it is done in non-
uniform way and often badly since the Java runtime needs some time for instance
to optimize the code. This implies that using a dedicated framework is always
a better choice. Since JMH is the only one with non-trivial user base, we examine
it in more detail. Figure 1.1 shows the version of JMH used by each project,
Figure 1.2 shows the adoption speed of new releases for all projects using JMH.
The graphs illustrate the tendency to use newer project versions, but the adoption
speed is not very good including for very active projects.

Figure 1.3 compares the number of tests per project for JUnit and JMH. The
first unit tests are created just at the project beginning and new ones are added
during the whole lifetime, with slightly more speed towards the beginning. This is
expected because young projects create more new (core) functionality that needs
to be tested. However, the first performance tests are seen much later and then
the curve follows a similar shape as for unit testing. This means that even for

15

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

1
.8

1
.9

1
.1

0
1
.1

1
1
.1

2
1
.1

3
1
.1

4

JMH version

0

10

20

30

40

50

P
ro

je
ct

 c
o
u
n
t

Figure 1.1: JMH versions used by projects. Versions 1.11, 1.12, 1.13 and 1.14
were released on January, April, July and September 2016, respectively.

Last project commit date

U
se

d
 J

M
H

 v
er

si
o
n
 r

el
ea

se
 d

a
te

2014 2015 2016

2
0
1
4

2
0
1
5

2
0
1
6

Figure 1.2: JMH version adoption delay. Each project is represented by one
point, projects near the diagonal use the most current JMH version, the further
from the diagonal, the more obsolete the JMH version used.

projects with performance concerns, early testing is not established habbit and
correctness is more favored than performance in early development stages.

To see the categories of projects that are using the JMH benchmarking frame-
work, we label each project with exactly one category based on the project
README or its documentation. Similar categories are grouped together to give
reasonable results. Table 1.4 presents the top categories with more than 10 mem-
bers. 66 projects are below this limit and 30 analyzed projects are excluded
because their purpose was only to compare other projects with each other.

To sum up the GitHub survey, our premise that unit testing is much more
established in open-source projects than performance testing is confirmed. The
JMH framework as the biggest representative of performance testing has a hun-
dred times fewer users than the representatives of the unit testing frameworks.
Performance tests are written later than unit tests and the adoption of newer
versions of the framework also has a significant delay. Proprietary benchmarking

16

JUnit

← Initial commit HEAD →

0
25

50
75

10
0 JMH

← Initial commit HEAD →

0
25

50
75

10
0

T
es

t
co

u
n
t

re
la

ti
ve

 t
o

p
ro

je
ct

m
ax

im
u
m

 [
%

]

Project lifetime

Figure 1.3: Test count during project lifetime. Both axes are normalized, the
project lifetime (X axis) stretches from the initial commit to the HEAD commit
of each project, the test count (Y axis) ranges from zero to maximum number of
test cases across the history of each project. Outliers are not shown, whiskers are
at 1.5 IQR.

Category Count
Database (ORM, SQL . . .) 33
Tutorials and examples 30
Networking and distributed systems 29
Algorithms 27
Data structures 22
Object serialization, parsers (XML, JSON, . . .) 22
Web frameworks or plugins 18

Table 1.4: JMH benchmark classification. Categories created through hierarchical
clustering, small categories not shown.

is not used much and can be incorrectly implemented, so it is generally better
to use the JMH framework. More in-depth information about the running times
of the performance tests and the distribution of the performance changes across
code versions are presented in [14].

1.4.2 Developer Survey
Despite the quality of the state-of-the-art microbenchmarking tools, the GitHub
results confirmed our hypothesis about their rare usage. We come up with several
possible reasons why the performance unit testing tools are not very popular in
the open-source developer community:

• the target projects are not performance critical,
• the testing tools are hard to setup and configure,
• the developers do not have enough time to write, maintain and regularly

run the tests,

17

• there is no obvious place where to run the tests, especially when a project
is developed in a team and CI servers are not designed to run performance
measurements,

• the developers do not know how to interpret the test data,
• the performance is tested in other ways.

Many projects are small single-purpose applications working only on limited
sizes of input data with short total execution times. These kind of projects are
not performance critical, but their users insist on correct functionality, which is
one of the many reasons for the big gap between popularity of functionality and
performance unit testing.

The performance testing tools can be hard to configure. Possible causes are
overly universal design of the tools, lack of community and documentation sup-
port and ignorance of the testing principles by the developers. The previous list
of popular tools showed that basic configuration should not be an issue, but some
advanced scenarios can be different.

Open source developers focus mostly on the implementation correct function-
ality in the whole software development process. Performance tests are mostly
not fun to write because they do not bring immediate results visible to end users.
It implies that other feature requests and fixing reported bugs have often higher
priority for the developers.

One of the hardest part of the performance evaluation process is to correctly
interpret the results. Raw data of one measurement give only a limited view on
the performance, because there is no baseline to compare them with. Instead,
useful results come from comparing two or more versions against each other. Since
each version has more data samples to reduce side effects of other processes in the
target system, statistical methods for comparing sets of samples are used. This
could be difficult to do correctly, especially for people not interested in statistics
and math in general.

To support our speculations, we did a short developer survey. We have iden-
tified developers who contributed to performance tests in projects using the most
popular microbenchmarking framework, JMH. These people already have some
knowledge about the performance tests, so the questions can be better targeted
than if the form is sent to regular Java developers. Also, the number of such devel-
opers is reasonably low to manually process the supplementary textual answers.
The complete survey form is attached as Appendix A.

However, it is important to remember that the answers come only from users of
one particular performance framework and thus they might not be fully accurate
for performance microbenchmarking in general. We are aware of that, but the
survey was already done for our paper [14] and extending it is hard due to a time
delay. Resending a similar form to the same developers again would result in
imprecise data because they would mostly not respond to the second form, so we
decided to use the original answers.

1.4.3 Survey Results
The developer survey was sent to 483 developers of 278 relevant projects using
the dominant performance framework, JMH. The developers were chosen based
on the fact that they edited code for at least one performance test. 111 completed

18

forms were returned, 78 of those allowed publishing complete results, 26 allowed
publishing only a summary and 7 disallow any form of publishing.

The popularity of the JMH framework comes from the trust in results (72%),
active maintenance (60%) and good documentation (40%) of the project. This
corresponds to legitimate demands on every used dependency – the project should
quickly adopt new techniques and correct old bugs, have clear usage with detailed
description and most importantly the users have to trust the outputs of the
software. Build system integration demands are surprisingly low at 33%, which
can indicate that the developers are willing to invest some time to initially set up
the framework in their build workflow.

JMH is mainly used for benchmarking own projects (80%), followed by com-
paring alternative applications (64%) and examining the performance of external
code (37%). This corresponds to the significant amount of tutorial and example
projects that allow to get relevant information about performance of software
alternatives and make the right decision during the development.

In a discussion about how often the performance tests should be run, almost
half of the developers were inclined to run them after every commit (47%), fol-
lowed by those who want to run them only on every release (37%). Additional
comments from the developer survey also support the fact, that the second ap-
proach can save a significant amount of time. However, only 42% of the developers
run performance tests on a regular basis (commit or release).

The performance tests are often more complex and harder to implement than
the regular unit tests. 64% of developers update the performance tests only
when fixing performance issues and a minority of 28% maintains the performance
tests on regular basis. These numbers show that performance testing is frequently
done after some issues are pointed out instead of preventing them by early testing.
The previous observation implies that the tests are mostly used only for fixing
particular issues, because regular testing to prevent repeating the old issues is
not well established.

One of the biggest issues about performance benchmarking is processing the
data. Most developers (77%) perform manual processing and just 13% of them use
automated plotting with manual checks. A fully automated evaluation process
was mentioned in negligible 6% of the answers. 80% of all developers claim
that they acted on the performance testing results, however most of the actions
are just design decisions (the tests are comparing alternatives) and not fixing
discovered performance regressions as primarily expected. This implies that in
current situation the performance tests are used more to guide design choices
than to keep good performance of a project.

To conclude the survey results, the demands of the performance test develop-
ers are summarized. A significant part (61%) think that automated evaluation
would result in more and better performance testing, exactly half of the devel-
opers want better build system integration and about a third (31%) feel that
making the performance tests should be simpler. 27% of the developers mention
issues with their spare time or budget. These obstacles line up with the previous
findings and should be addressed to improve the testing workflow and extend the
number of projects that use performance testing.

19

1.5 Goals Revisited
The analysis of the current state in Java microbenchmarking confirmed that some
tools for the performance measurement exist but they are not widely used. An ac-
tive development with the support of a bigger organization to warrant some future
stability and trustworthiness seems to be the major key for success. Simplicity
and time or financial budget of the developers are another important criteria. To
extend the number of actively testing projects, a set of easy to use tools has to
be available and the overall public awareness about performance testing and the
supporting tools has to be raised. This thesis focuses on developing the tools.

Several core use-cases which are used as a base for our design decissions follow
from the analysis:

1. The performance tests need to be configured to produce correct and stable
results. One of the possible ways is to increase the number of test cycles
and then visually find the initial amount of values to skip. This requires
a data visualizer with scatter plot showing the data run separately.

2. Developers in a small team with no testing infrastructure write performance
tests only in a spare time or when they discover a performance problem. Due
to limited resources they run the benchmarks against the released versions
of the projects only, and then they visually inspect the performance in
a data visualizer.

3. A team with a great care about performance runs the tests after every push
to their code repository. A dedicated server performs the measurements,
stores the resulting data and automatically tries to find performance drops
between the last and some of the older measurements. When a problem is
found the developers are notified by email. At the same time, the server can
schedule more measurements of any version when it concludes that there
are not enough data for statistically significant answer.

4. The project managers are not familiar with the details of performance test-
ing; however, they understand the concepts and want to follow the progress
compared to previous states of the project. This means that they only care
about visualization of the performance data, so the visualizer has to be easy
to run, and has to provide overview graphs over multiple versions.

Some of the goals defined in the introduction (writing performance tests, gath-
ering and storing the data, automated evaluation of slowdowns over the data and
visualizing the data) are almost completely covered by the existing tools, others
are hard to achieve without extensive modifications of the current software. But,
a simple toolset or a framework that integrates all of the parts together to use
as one complete package is missing. Our solution attempts to fill this hole in
the Java performance testing tools. The goals defined in the introduction are
revisited to reflect the model use-cases:

• the developers write performance tests in a dedicated testing framework,
• we provide a build system integration plugin for test execution, storing the

data, and generally for preparing the testing environment,

20

• we provide a tool for automated evaluation of the performance changes
depending on (pre)defined performance criteria,

• we provide an interactive graphical data visualization tool supporting mul-
tiple versions of the data and various graph types.

We focus on a modular design to allow usage of the evaluator or the visualizer
as a standalone application with other ways to prepare the inputs for them. Big
effort is exerted into making each part simple and easily understandable. The
whole solution targets at smaller open-source projects where good performance
is important, but we hope that the same tool can be used as a starting point for
much bigger projects where some customization is likely to happen (dedicated
testing hardware in multiple configurations, different kinds of statistics, etc.).

The designation of the tool to small open-source teams means that most of the
measurements are performed on personal computers with a regular OS installation
(including GUI, web browser in the background, enabled HyperThreading, etc.),
so the data can have higher noise level than measurements in the lab environment
and statistical processing needs to cope with these conditions. Differences in
performance across versions are presented as a simple answer with the possibility
to examine the results further.

The data visualization component is designed to be flexible independent on
the different types of data, multiplatform and interactive. Hands-on experience
with the visualized data is faster and more understandable than text description.
Finally, integration into a build system seems important even though the devel-
oper survey shows only a little interest. A suitable build system is chosen based
on the used components but the integration into a different system should be
straightforward.

The proposed set of tools reflects our findings and the answers from the devel-
oper survey. Using the established projects as dependencies can give credibility
to our project and can help to extend the performance testing to the masses. The
simple design is the best for common usage by most of the projects, but some
of them may need more modifications. Although customization is possible with
a set of configuration values, some highly advanced changes would require the
code editing. However, an open-source nature of our solution makes customiza-
tion of the project fairly easy. Detailed design and implementation choices are
described in Chapter 2, the user documentation is attached as Appendix B.

1.6 Related Work
Unit and performance testing are established activities to control software quality.
Studies [15] and [16] shows reduction of functional bugs when unit testing is used,
while papers [8] and [9] report similar results for early performance testing and
a broader overview of the topic challenges. Multiple studies inspect the testing
practices including the developer opinions. Many companies have issues with test
automation as reported by [17] or [18] in context of regression testing. Importance
of reasonable setup effort is shown by [19].

DevOps principles are becoming very popular. Multiple studies [20, 21, 22]
show that accepting these principles and integrating them into the software devel-
opment process increases the performance awareness. This statement is proven

21

also by [23] where early integration of automated testing on the Jenkins server
helps detecting performance regressions earlier.

Study [24] summarizes the actual state of performance testing in the Java
open-source projects, where manual classification of 111 projects from GitHub
is performed. The results correspond with the data collected and presented in
this thesis and [14]. The topic of statistical evaluation of the results is covered
by paper [25] where a formalism for comparison of test methods and versions is
defined. Paper [26] examines visualization of performance data where the results
of the tests are rendered into documentation.

A complete performance testing framework (not only) for the Java microser-
vices is designed in [27]. The results are promising, but missing the visualization
part and focus only on the HTTP endpoints makes this framework hardly usable
for non-web projects. A similar tool for the Flask Python framework exists [28],
including the version control system (VCS) integration and a web dashboard
presenting the collected data.

A different approach to automated performance testing is provided by instru-
mentation based tools such as Kieker [29], but the need for complicated environ-
ment with stable test fixtures is not suitable for simple and small projects. To
create a stable environment for testing, a tool like DataMill [30] can be used. It
can eliminate data bias caused by binary link order, process environment size and
many more platform dependent factors.

22

2. Tools Design
From the analysis we have the goals for a new framework helping developers with
performance testing from the start to the end. These goals cover the main steps
of performance testing – writing and running the tests, storing the performance
measurement data, testing slowdowns and speedups across the saved measure-
ments and visualizing them. We have a suitable testing framework, but data
evaluation and visualization is not covered by the existing tools enough, as also
reported by the developers. A good user experience is a priority, so our framework
is designed with attention to the user interface as well as setting the appropriate
default configuration values.

Using suitable existing tools for the subtasks is preferred, however, their con-
nection and interoperability needs to be improved. The main task for this part of
the thesis is to find useful open-source software projects and implement the tools
for testing and evaluating performance on top of them.

2.1 Performance Tests

For performance testingi, we use The JMH framework. The main reasons for
this choice are evident from our previous GitHub and developer survey. JMH is
the most used Java microbenchmarking tool in open-source projects at GitHub
and there is no evidence that other open-source repository hostings may report
substantially different numbers. Another benefit of JMH is that some developers
are already using it to write performance tests and other performance and unit
testing frameworks are used similarly compared to JMH.

The choice of the JMH framework is connected to the supported build system.
The only officially supported build system of the JMH framework is Maven, but
there is also a community supported Gradle build plugin. Our GitHub survey
shows that 223 of the JMH projects are build with Maven and another 52 projects
use Gradle. This implies that Maven is an eligible build system for our framework,
however, we left the possibility of using a different build system in the future open,
mainly because of increasing popularity of Gradle.

Creating new projects and adding performance tests directly follows the JMH
standards. A new project is generated from the Maven archetype, for example
the command for generating a new project in test folder is shown in Figure 2.1.

mvn archetype:generate \
-DinteractiveMode=false \
-DarchetypeGroupId=org.openjdk.jmh \
-DarchetypeArtifactId=jmh-java-benchmark-archetype \
-DgroupId=org.sample \
-DartifactId=test \
-Dversion=1.0

Figure 2.1: Maven archetype for creating JMH enabled project.

23

No special modifications are required for writing actual performance tests,
so the numerous official examples1 can be used as a decent study document.
A summary of the general rules follows:

• Choose what to test. Performance tests should have a well defined scope,
so the results have an exact meaning and the developers can act on their
basis.

• Test precisely. Make sure the testing code is not optimized out by the com-
piler. The testing frameworks provides methods to deal with this situation,
for example the Blackhole object of JMH.

• Set up the tests. Each test needs a good configuration to reflect actual
performance. It is important to find a balance between the reasonable
length of testing and the number of obtained measurements in this time
window to allow us making statistically significant conclusions. A high
enough warmup time should filter out initial set of imprecise values.

The completed tests are built and run with the following commands:

$ cd test/
$ mvn clean install
$ java -jar target/benchmarks.jar

The benchmarks.jar file is a self-contained executable JAR archive which
holds the benchmarks and all the essential JMH code. The entrypoint is provided
by the framework and allows runtime changes of the test properties (such as the
number of iterations), output format or the use of tests which are executed. JMH
supports specifying a custom main method for the JAR, however, this leads to
variance between projects, lack of standard command-line interface and it does
not bring considerable benefits for most projects. For our use-case the default
main method is preferred.

Each of the performance tests needs to be configured. The test is executed for
a longer period of time (i.e., half an hour is advised) without skipping warmup,
and the right warmup configuration is determined from the results. Since each
test is unique, this process should be repeated on a per-test basis and the final
configuration should be set for each test using annotations attached to the test
method. Another option is to establish a common configuration for all tests and
pass it as a command-line argument to the compiled archive, but this approach
does not scale well for all but the smallest projects. The final configuration is
valid on that exact testing computer and cannot be used elsewhere without prior
validation.

2.2 Storing Data
JMH provides several machine-readable output formats for saving performance
data – plain text, CSV, SCSV, JSON, LaTeX. The JSON format is meant to

1http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/
java/org/openjdk/jmh/samples/

24

http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples/
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples/

contain a full data dump about the measurement, other output formats contain
only partial information. We therefore use the JSON output format.

There are several benchmarking modes in JMH – throughput, average time,
sample time and single shot. Each of the modes has its application and is meant
to be used in different benchmarking scenarios. Our investigation shows that
the sample time output values are just averages of the actual captured values.
After a discussion with the lead developer, Aleksey Shipilev, we have prepared
a patch for extending the JSON output for this mode. The patch was merged
to upstream as revision 2e5a7761ce122 at 16 August 2016 and released in JMH
1.14. The sample time benchmarking mode produces a histogram of randomly
sampled values taken during the test execution. This can rapidly generate a large
number of values where a significant portion are duplicates. Since JMH does not
preserve the time order of the samples, we put a histogram of the values (pairs
of values and their quantities) into the output file. This format reduces the file
size compared to unfolding the histogram values.

The JMH performance data is obtained as text files containing the JSON for-
matted data. To design a suitable long term data store, some basic requirements
have to be satisfied:

• the store needs to be easy to setup, preferably without any configuration,
• the store should be bound to one project and allow moving/sharing data

between developers,
• the data has to be inserted from JSON files,
• reading the data has to be possible with version and test granularity,
• reading the data has to be fast enough for interactive work with the visu-

alizer,
• it has to be possible to append new measurement data to the existing ones.

We can think of several possible storages. Prior to deciding a suitable al-
ternative, we estimate the data size. A mid-size project can have about 200
benchmarks (the most in our survey is 470). We guess that such a project gets 5
commits per day on average. Each measurement of this size can produce a JSON
file about 1.5 MB large. For per commit measurement mode, this is about 1800
files with 2.5 GB of raw data per year. However the old data can be archived in
compressed format to reduce the required disk space.

With this size we are able to store the data in raw JSON files in a simple
directory structure. Databases like MySQL would provide better reading perfor-
mance, but the data need to be converted and inserted from the JSON files and
the MySQL database requires non-trivial configuration as it runs as a separate
service. A more suitable alternative to MySQL database is SQLite, which is a
one file database with a library engine and no configuration.

We choose a simple directory structure with raw JSON files inside the project
root as the easiest option for our project. It requires no configuration and the
data is saved in a native JSON format, from which third-party processing tools
can benefit. The same arguments apply against other data stores like RRD or
MongoDB. The performance of reading the data files is sufficient, because the
visualizer mostly work with less than a hundred of test versions at once. More

2http://hg.openjdk.java.net/code-tools/jmh/rev/2e5a7761ce12

25

http://hg.openjdk.java.net/code-tools/jmh/rev/2e5a7761ce12

displayed versions make the graph items very small, so it is better to avoid it.
Such amount of data can be processed in less than a couple of seconds on modern
hardware, which is acceptable. The proposed directory structure is shown in
Figure 2.2.

${projectRoot}/
measurements/

data/
v-1426436027-1d78747356c4e1699f9bac3d14b38e509c36147d/

1520002713.json
1520031458.json

v-1426436819-997c5c3930a6e8bb61a2efc8eebfcfd10fac4474-dirty/
1520078025.json

src/
target/
...
pom.xml

Figure 2.2: Proposed directory structure for storing JMH measurements alongside
the the project sources.

The presented directory structure follows a standard structure of the Maven
projects. Along default entries there is a new directory, measurements/, which
contains the data for our tools. We do not use the target/ directory because it
can be cleaned anytime and Maven structure permits metadata in top level direc-
tories. The data/ subfolder holds the data from executing the JMH benchmarks,
where the measurements follow a specific naming convention. It is not required
to follow these rules if the metadata are not needed. Every JSON file inside
data/ represents a single version with a single measurement and every directory
containing the JSON files represents a version (using the directory name) with
possibly multiple measurements inside.

The naming convention is the same for both files and directories in data/ with
the exception that files have the .json suffix. The schema is in Figure 2.1. The
names of the measurement files in the version directory are just UNIX timestamps
of the measurements with the .json suffix.

Executing the benchmark measurements and saving the results in the spec-
ified format needs to be automated, which implies the need for a build sys-
tem integration plugin. We created such a plugin, jmh spl-maven-plugin, in the
cz.cuni.mff.d3s.spl package. The plugin is available from the Maven Central
Repository and is ready for use from any project. Figure 2.3 shows goals of the
plugin and their connection to the Maven build lifecycle.

For executing the JMH benchmarks, there is the data saver goal of the plu-
gin. It binds itself to the verify phase of the build process so its execution
is triggered by the mvn clean verify command of following like install or
deploy. The test phase of the build process is not used because the plugin needs
the JMH benchmarks.jar to be already generated. Its main purpose is to run
the benchmarks.jar with additional arguments to save the outputs in a correct
format in the right location. Basically it just executes the

26

Name Section Meaning
v Common prefix, idea is that the identifier should

start with letter (not number)
1426436819 Unix creation timestamp of the version, usually

found in VCS (Git)
997c5c...ac4474 Identifier of the version, usually Git commit hash

or Git tag
dirty Optional flag that the measurement was performed

on code under development and may not reflect
any version in VCS

Table 2.1: The description of the naming conventions for the stored measurement
versions. The identifier the table is describing is
v-1426436819-997c5c3930a6e8bb61a2efc8eebfcfd10fac4474-dirty.

spl_annotation

generate-sources compile test package vefify install

data_saver

evaluator_fetcher

formula_extractor

Maven Build
Phases

Plugin Goals

Figure 2.3: Important parts of Maven build lifecycle and connection of jmh spl-
maven-plugin goals to the build phases.

$ java -jar target/benchmarks.jar -rf json -rff \
./measurements/data/v-1426436819-997c5c3930a6e\
8bb61a2efc8eebfcfd10fac4474-dirty/1520078025.json

command, optionally exteded by additional arguments. These can be specified
permanently in the project configuration or temporarily as the command-line
arguments. Basic plugin setting is shown in Listing 2.1.

When the measurements are executed from a project directory containing Git
VCS files, the commit hash and timestamp of the HEAD commit are automatically
obtained from there. If Git is not accessible and the version is not specified on
the command-line, the current timestamp with the default identifier are used to
construct the version name and the timestamp is also used as the identifier of the
measurement.

The described plugin meets our demands for easy build system integration.
It requires only a few lines added to the pom.xml file at project setup and then
it just works via the standard Maven command. The data is stored in an easy to
understand and native way for JMH, so third-party tools can access them. Git
integration is also very useful because most contemporary open-source projects
use Git as their VCS.

27

1 <plugin >
2 <groupId >cz.cuni.mff.d3s.spl </ groupId >
3 <artifactId >jmh_spl -maven - plugin </ artifactId >
4 <version >1.0.4 </ version >
5 <executions >
6 <execution >
7 <goals >
8 <goal >data_saver </goal >
9 </ goals >

10 </ execution >
11 </ executions >
12 </ plugin >

Listing 2.1: Maven dependency configuration of the presented plugin for saving
the performance results.

2.3 Testing Performance Changes
One of the primary objectives of our framework is comparison of performance
data, which informs the developers if their changes improve performance or bring
regressions. The data can contain some amount of noise so statistical methods
need to be used to provide accurate (statistically significant) results.

We use an existing tool, spl-evaluation-java3, as a base for statistical process-
ing and we have extended it to support the JMH output format of the data. Also,
we have moved the build process of the tool to Maven to comply with JMH and
our jmh spl-maven-plugin. The tool relies on the Stochastic Performance Logic
(SPL) [25] formalism for data processing, resulting in a ternary answer – “yes, the
formula evaluates as correct”, “no, there is no evidence that the formula evalu-
ates as correct” and “there is not enough data to provide a statistically significant
answer”.

The default implementation uses the Welch t-test [31] interpretation, but
there are more interpretations which can be potentially used like Mann-Whitney
u-test [32]. The formulas are evaluated on 0.95 significance level.

The complete SPL formalism is very complex, but our use-cases uses only
a subset of the formulas. These formulas describe assumptions about performance
of two versions, for example that version 1.0.0 of the code is not slower than
version 0.9.3. Supported syntax of the formulas is described in Extended Backus-
Naur Form4 in Figure 2.4.

In JMH one benchmark can be executed multiple times with different measure-
ment modes and with different runtime parameters. To distinguish between such
benchmarks in formula evaluation, the arguments are encoded into the benchmark
name. The schema is a fully qualified domain name, the benchmark mode and
the list of parameters in a name=value format, all of the sections concatenated
with the @ symbol into a single string.

Each formula is valid for one benchmark and two of its already measured
versions, so there is no obvious place where to write the formulas. Our solution
allows a number of possible places:

3https://github.com/D-iii-S/spl-evaluation-java
4https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form

28

https://github.com/D-iii-S/spl-evaluation-java
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form

SPLFormula = AtomicFormula
| "(" SPLFormula ")"
| SPLFormula OP SPLFormula ;

OP = "<" | ">" | "&&" | "||" | "=>" ;
AtomicFormula = Identifier | Number ;
Identifier = Letter { Letter | "." | "-" | "_" } ;
Number = "0"

| NonZeroIntNumber { IntNumber }
| [{ IntNumber }] "." { IntNumber } ;

IntNumber = "0" | NonZeroIntNumber ;
NonZeroIntNumber = "1" | "2" | "3" | "4" | "5" | "6" | "7"

| "8" | "9" ;
Letter = "A" | "B" | "C" | "D" | "E" | "F" | "G"

| "H" | "I" | "J" | "K" | "L" | "M" | "N"
| "O" | "P" | "Q" | "R" | "S" | "T" | "U"
| "V" | "W" | "X" | "Y" | "Z" | "a" | "b"
| "c" | "d" | "e" | "f" | "g" | "h" | "i"
| "j" | "k" | "l" | "m" | "n" | "o" | "p"
| "q" | "r" | "s" | "t" | "u" | "v" | "w"
| "x" | "y" | "z" ;

Figure 2.4: Structure of SPL formulas described in EBNF.

• an annotation for the benchmark method with an exact specification of the
versions,

• an annotation for the benchmark method with placeholder versions, which
are bound to real versions dynamically before the formula evaluation,

• same as two previous bullets, but the annotation is specified before the class
so it is valid for all benchmarks in that class,

• a runtime command-line argument per benchmark or wildcard for all of the
benchmarks together.

For processing annotations, there are two issues that need to be solved – pro-
viding the annotations to the project and parsing them from the code to provide
the formulas for evaluation. Both issues can be easily achieved by extending the
Maven plugin with the relevant goals.

The first goal, spl annotation, provides an @SPLFormula annotation, which
takes an SPL formula string as the only argument. This goal is bound to the
generate-sources lifecycle phase, which precedes compilation when the annota-
tion has to be available. The second goal is formula extractor, which is executed
in the end of the compile lifecycle phase of the Maven build process. It reads the
/META-INF/BenchmarkList file with a list of benchmarks generated during the
build of the JMH enabled project and parses the file using the JMH API, gets an-
notations for each of them and finally writes them to the /META-INF/SPLFormulas
file. In the package phase of the build, this file is included into the final JAR
package.

We solve the distribution of the SPL evaluation engine JAR to the users
with another goal in the Maven plugin. The goal is evaluator fetcher and it
downloads the spl-evaluation-java JAR from the Maven Central Repository into
the measurements/ directory in the project root. The default placement is shown
in Figure 2.5, but the version of the tool and target path can be configured to fit
specific needs.

29

${projectRoot}/
measurements/

data/
...

spl-evaluation-java-1.0.4.jar
src/
target/
...
pom.xml

Figure 2.5: Proposed position of spl-evaluation-java archive in project direc-
tory structure.

Usage of the evaluator tool is described in detail in the user documentation in
Appendix B. The basic pattern is to tell the tool where to get the corresponding
SPL formulas, the data directory is usually left with default value. Both options
are configured by the command-line arguments. Then there are two main op-
eration modes – evaluate the formulas or just check if all formula versions are
available in the data and print the answers. The latter mode could be primarily
useful for automatic evaluation with on demand execution of measurements.

To sum up, we provide a statistical tool for measured performance data com-
parison and we keep usage simple for the end users. The simplest scenario of
getting the tool and evaluating an SPL formula requires only adding one goal
(evaluator fetcher) to jmh spl-maven-plugin in the pom.xml file, running Maven
and then executing one JAR file with one command-line argument specifying
the formula. An open issue is integration of the evaluation itself into Maven.
A standalone tool without direct Maven integration is chosen because of better
portability (the measurements/ directory can be taken to another computer sep-
arately and contains all possible data and tools), as well as easier manipulation
with the dynamic command-line arguments.

2.4 Data Visualization
An important feature for comparing data is their visualization. Graphs provide
a lot of information in an easy to understand form. For performance measure-
ments, the graphs can help set the initial configuration of the benchmarks as well
as find the size of performance changes across multiple versions. The visualizer
helps users to act based on the SPL evaluation tool suggestions.

We find several attempts to create a data visualizer for the JMH perfor-
mance data. The first one is a web application at https://nilskp.github.
io/jmh-charts/ using non-standard features which break compatibility with
some browsers. The second visualizer is a standalone web application at http:
//jmh.morethan.io/ with an optional Jenkins plugin. This project is more suit-
able for the purpose of this thesis, however, it is missing some of the key features
following from our model use-cases – interactive comparison of multiple versions
and different runs of a single version. Also, both applications require manual
loading of the JSON files to the browser which is against our principle of user-

30

https://nilskp.github.io/jmh-charts/
https://nilskp.github.io/jmh-charts/
http://jmh.morethan.io/
http://jmh.morethan.io/

friendly interface. Thus, we choose to write a new visualizer instead of performing
extensive modifications of the existing software.

Writing a graphical user interface (UI, GUI) is not easy. For almost every
programming language there are numerous frameworks that help the developers
with the UI, for example Java Swing5, Python Tkinter6 or Qt widgets7. From
a variety of possibilities we choose writing the visualizer as a dynamic web page.
Some of the biggest benefits are that the interface is easy to design and develop, it
is multiplatform and requires no additional tools installed (we believe that a web
browser is a base part of every end user system). This choice follows the trend of
popular projects like Visual Studio Code8, which are written in JavaScript and
packed into desktop apps using the Electron framework9.

Choosing JavaScript for frontend interface directly affects the architecture of
the solution. Performance data is presented from JavaScript running in a web
browser, which cannot directly read files on the local filesystem. A common way
to bypass this restriction is to create a separate server with the purpose of reading
the data and serving them to the browser using the HTTP protocol. From many
interfaces designed for HTTP transfer (XML-RPC, SOAP, . . .), Representational
State Transfer (REST) is used for its high overall popularity in web applications
and good support in many libraries.

The interface between the client and the server part is designed and docu-
mented to allow different visualizing frontends fetch performance data from our
server. One of the most popular tools for this is Swagger10. The open-source tool
turns a simple YAML description of the API into a documentation in multiple
formats and also allows an automatic generation of the server and client stubs for
many different frameworks. In our case the API design is pretty straightforward,
because it just needs to allow fetching data with test and version granularity.
This leads to three endpoints which are described in detail in Appendix C:

• get the available tests,
• for a selected test get the available versions,
• for a pair of test and version get performance data.

A similar alternative is to structure the endpoints differently, i.e., first get a list
of all available versions and then for a selected version get the list of available
tests. However neither of the alternatives has a significant benefit so we choose
the first presented version, because we believe that loading more versions for one
test is a more common pattern.

2.4.1 Client
The client JavaScript frontend is written in the React framework v1611. It is
a single page application using The EcmaScript 6 standard. Data is fetched using

5https://docs.oracle.com/javase/6/docs/api/javax/swing/package-summary.html
6https://docs.python.org/3.6/library/tkinter.html
7https://doc.qt.io/qt-5.10/qtwidgets-index.html
8https://code.visualstudio.com/
9https://electronjs.org/

10https://swagger.io/
11https://reactjs.org/

31

https://docs.oracle.com/javase/6/docs/api/javax/swing/package-summary.html
https://docs.python.org/3.6/library/tkinter.html
https://doc.qt.io/qt-5.10/qtwidgets-index.html
https://code.visualstudio.com/
https://electronjs.org/
https://swagger.io/
https://reactjs.org/

the fetch API and stored in the state of the root component of the application.
A common pattern for storing data in JavaScript applications is to use a shared
storage (for example Redux12), but for smaller projects it is easier to use the state
of the main component and avoid a set of possibly big dependencies. The app is
built on top of Create React App13 and uses Yarn for managing dependencies.

The key component is a JavaScript graphing library. Required features are
support of multiple graph types including line plots, box plots and histograms,
modern look, React integration and permissive licence. We choose Plotly.js14 as
a suitable candidate with appealing user experience. The React integration is not
seamless, but a blog post on the Plotly Academy site15 is very helpful to set up
the project. Other tested third-party React components for graph plotting turn
out to be lacking some of the important features of the library.

From the design perspective, the page is split into three sections. The left
one is for browsing through the available tests and versions, and the right one
is horizontally split into a big upper section containing the graph of the loaded
values with controls and a small lower section containing the list of loaded tests
or versions. This structure follows the contemporary standards for user interface.
A basic user interface overview is in Figure 2.6, detailed information is in the user
documentation in Appendix B.

Figure 2.6: User web interface of performance data visualizer.

The displayed data can have miscellaneous formats, so the metadata (title,
axis labels, etc.) cannot be set in advance because they depend on the actual state
of the application. It is possible to show the complete test metadata in a table
including the units, which are also displayed in tooltip triggered by mouse hover
over the data when available. The axis labels are determined from the actual
graph type. This characteristic is emphasized in user documentation as well.

12https://redux.js.org/
13https://github.com/facebook/create-react-app
14https://github.com/plotly/plotly.js/
15https://academy.plot.ly/react/3-with-plotly/

32

https://redux.js.org/
https://github.com/facebook/create-react-app
https://github.com/plotly/plotly.js/
https://academy.plot.ly/react/3-with-plotly/

The app can be configured with an .env file in the project root. The only used
variable is the REACT APP API BASE, which points to http://localhost:42000
by default. For normal usage without debugging symbols, the app needs to be
compiled in production mode. The build process creates minified and optimized
versions of JavaScript and cascade style files including all of their dependencies.
The process also transpiles the EcmaScript 6 code to a standard supported by the
common web browsers. After successful compilation by the yarn build command
the results are in the build/ directory. The content of this directory can be served
by any web server supporting static files.

2.4.2 Server
The server side component of the visualizer has to serve the performance data
as a REST service. Because the spl-evaluation-java project already has a parser
for the JMH data files, it is natural that serving the data is responsibility of this
component as well. Also, data visualization fits the purpose of this component,
which can be described as helping users to understand the data.

The server stub is generated from the Swagger API definition. From a list of
Java servers we choose msf4j16 for its relatively small size and painless integration
into our project. JMH data is read and parsed with the existing methods and
one new command-line switch allows to start the API server instead of evaluating
the SPL formulas.

When a server is available, it is possible to serve the client files as well. This
solution makes the evaluator a compact standalone tool with all capabilities for
evaluation and visualization of the data. Also, our Maven plugin has a goal that
fetches the evaluator, so this additional integration requires no more configura-
tion. It implies that there is a second service in the msf4j server which serves
the files generated from the build process of the client part of the visualizer.
These files are included in the spl-evaluation-java project as resources, which are
bundled into the resulting JAR archive.

These two web services run on a common network port, with the default
configuration set to 42000. They bind all available network interfaces, but the
usual usage would be through the localhost. To simplify the process of running
the visualizer, the http://localhost:42000/ URI is opened in the default web
browser when the user graphical interface is available. Also, the URI is printed
to the console by the msf4j framework.

The described process creates a self contained bundle for offline usage. Packing
this bundle into the existing component does not increase the complexity for users,
but brings new functionality with only minor adjustments. The Maven plugin
creates the measurements/ directory in the project root, which contains both
the data and the tools necessary for evaluation and possibly also visualization of
the data, so this folder can be copied to a different location while preserving all
functionality.

16https://github.com/wso2/msf4j

33

http://localhost:42000
http://localhost:42000/
https://github.com/wso2/msf4j

34

3. Practical Validation
We want to assess practical usability of the presented testing framework in a real
world project. Because the framework is new and no project is using it yet we do
a custom study where the abilities of the framework are validated on a sample
Java project. We prepare a set of experiments to help us with evaluation of
the framework usability. The experiments are similar to the model use-cases
presented in Section 1.5.

A project of choice is a string templating engine mustache.java1. It is an
established project with more than one thousand commits and 42 releases (on
12.2.2018) which gives us a plenty of data to examine multiple different usage
scenarios. Also there is an effort to implement some performance tests, but sadly
just using the proprietary method, sometimes also with connection to the JUnit
tests. This way of performance testing is not ideal as was discussed earlier in
Section 1. However, there are a few recent JMH performance tests as well which
can be directly used as a base for our framework integration.

For execution of benchmarks we use a dedicated server. The hardware and
software properties of the server are described in Table 3.1.

Server Supermicro SYS-5038MR-H8TRF
CPU 8 core Intel Xeon E5-2620 v4 @ 2.10GHz with

disabled Hyper-threading
RAM 4× 16 GB DDR4-2133
Disk Seagate 1TB HDD, 7200RPM, 128MB Cache
OS Fedora 25 Server
Java OpenJDK 1.8.0 144

Table 3.1: Hardware and software properties of used testing computer.

3.1 Ease of Integration
The first experiment focuses on integrating our framework into mustache.java to
allow easy test execution and visualization of the collected data. Primary evalua-
tion metrics are complexity to achieve a similar setup to the original execution of
the performance tests and a complexity to evaluate SPL formula with the existing
data or display the data in the visualizer. These metrics are expressed in number
of added lines to the project build configuration file and the number of additional
options to commands invoking requested actions. Secondary metrics of the ex-
periment evaluation include discussion about integration into other common and
non-standard project setups.

Original project uses a Maven module for the JMH tests, so the build and
the execution configurations are located in the module pom.xml file. The test
execution is configured using the exec-maven-plugin in the test phase of the build
process. Whole configuration includes one plugin with 28 lines. Similar config-
uration with our plugin jmh spl-maven-plugin takes only 18 lines, but we save

1https://github.com/spullara/mustache.java

35

https://github.com/spullara/mustache.java

5 lines on argument representation. Direct comparison is shown in Figure 3.1.
Both configurations require adding one plugin section of similar length to the
project build file so the configuration complexity is even despite the fact that
jmh spl-maven-plugin configuration is slightly shorter and the plugin is slightly
more powerful.

1 <plugin >
2 <groupId >org. codehaus .mojo </ groupId >
3 <artifactId >exec -maven - plugin </ artifactId >
4 <version >1.6.0 </ version >
5 <executions >
6 <execution >
7 <phase >test </ phase >
8 <goals >
9 <goal >exec </goal >

10 </ goals >
11 </ execution >
12 </ executions >
13 <configuration >
14 <executable >java </ executable >
15 <arguments >
16 <argument >-Xmx1000m </ argument >
17 <argument >-classpath </ argument >
18 <classpath />
19 <argument >org. openjdk .jmh.Main </ argument >
20 <argument >-f</ argument >
21 <argument >2</ argument >
22 <argument >-wi </ argument >
23 <argument >5</ argument >
24 <argument >-i</ argument >
25 <argument >10 </ argument >
26 </ arguments >
27 </ configuration >
28 </ plugin >

1 <plugin >
2 <groupId >cz.cuni.mff.d3s.spl </ groupId >
3 <artifactId >jmh_spl -maven - plugin </ artifactId >
4 <version >1.0.4 </ version >
5 <executions >
6 <execution >
7 <goals >
8 <goal >spl_annotation </goal >
9 <goal >evaluator_fetcher </goal >

10 <goal >data_saver </goal >
11 <goal >formula_extractor </goal >
12 </ goals >
13 </ execution >
14 </ executions >
15 <configuration >
16 <additionalOpts >-f 2 -wi 5 -i 10 </ additionalOpts >
17 </ configuration >
18 </ plugin >

Figure 3.1: Comparison of Maven configuration allowing performance tests exe-
cution. Left snippet represents traditional way for JMH benchmarks taken from
the mustache.java project, right snippet represents usage of our plugin for the
same setup.

Both presented plugins allow to run the tests with the same arguments, but
jmh spl-maven-plugin also saves the measurement results in the JSON format,
provides and parses SPL formulas from annotations to the resulting JAR and
fetches evaluator JAR near the results. Since SPL formulas are not considered at
this time, the configuration could be simplified by omitting spl annotation and
formula extractor goals.

To judge the complexity of formula evaluation and visualizer execution we
suppose that some measurement are already done using our plugin. This means
that the performance data are saved in measurements/data/ directory inside
the project root and the evaluator JAR is downloaded into the measurements/
directory itself. Default configuration of the evaluator is aware of this structure,
so SPL formulas can be evaluated only with a one argument specifying either the
formulas or their location. Running the visualizer needs the additional argument
-S which causes opening the local measurements in the default web browser. This
implies that number of required arguments is very low and there is no much space
for further optimization.

Previous text describes integration with JMH enabled project using Maven
modules. Projects that are not already using JMH should follow its integration
guidelines first. Because the easiest way of creating a JMH project is from the
Maven archetype, it is reasonable to have a separate Maven module for perfor-
mance tests in the original project. Multi-module setups help with code organisa-
tion for bigger projects, but they can be overly complicated for smaller projects.

36

The only difference between these setups is in position of the pom.xml file where is
the plugin configuration, nevertheless the plugin is compatible with both variants.

The plugin is written to be compatible with other Maven plugins, however
plugins modifying the self-containing JAR or data directory can prevent smooth
integration. Such conflicts have to be resolved manually by changing configura-
tion of one or both non-compatible plugins.

CI servers are popular for unit tests execution, but usually they are not
suitable for performance testing. They often use virtualization technologies like
Docker and there is no control about the server hardware configuration and uti-
lization. In this case we recommend to disable execution of the performance
testing with the command-line argument. Performance testing on CI server is
reasonable only on dedicated hardware with controlled load and with possibility
to keep the measured data, for example on a shared volume. The plugin is then
configured to save the data into that location.

General conclusion for integration of our evaluation framework is that the
build file settings are similar to the traditional integration of JMH with custom
target for tests execution, but our plugin is slightly shorter and provides more
functionality. The executions of formula evaluator and data visualizer are very
easy using few arguments with clear syntax. The framework is also well prepared
to the integration into non-standard project setups.

3.2 Test Configuration
The next experiment targets configuration of performance tests. Performance of
Java application can change over time when JIT compiles and optimizes pieces of
the bytecode, which makes it necessary to skip some initial measurements until
the performance of the application stabilizes. The JMH framework is aware of
this and allows the developers to configure the number of skipped iterations or the
initial time period when measurement results are not saved. This configuration
can be global or separate per test.

The right setup depends on many factors and one of the best ways to find
it out is to run each test longer and find a spot from which the data values are
similar. The execution length depends on more factors like the actual source
code, size of the test, target results precision, etc. but sensible values are usually
from several minutes up to one hour. The goal of this experiment is to find out if
our framework can help the developers to create suitable configuration for a test
and then compare such values with the original configuration provided by the
developers of mustache.java who were using only the plain JMH framework.

Because the procedure is the same for all tests, only one representative
is chosen – mustachejava.benchmarks.TweetBench.testTimeline in commit
8877027. Optimal results are discussed afterwards to cover various warmup be-
havior and sketch conclusions drawn from them.

After integration of our framework an extended measurement with no skipped
warmup iterations is collected. Figure 3.2 shows performance characteristic
of this test with no warmup iterations and total of 5000 iterations per run.
In this case the measurement can be started using the mvn clean install
-Ddata saver.additional options="-f 5 -wi 0 -i 5000" command. This
runs for about seven hours, so each run takes more than an hour.

37

Figure 3.2: Performance characteristic of testTimeline benchmark in 5 forks
per 5000 iterations with no skipped warmup iterations.

The visualization style with one line per benchmark run clearly shows that
after the first couple of values is significantly slower than about the last third of
values. This means that the default configuration with only 5 warmup iterations
is definitely not enough. For optimal benchmark there is a point from where the
values have only small differences so the measurements of such values has very
tight confidence interval. Wrongly designed benchmark produces unstable values
for whole execution time, so no number of skipped warmup iterations improve
the width of resulting confidence interval.

The results from Figure 3.2 show that performance changes occur near it-
eration 2750 which is after about 40 minutes from the start of the execution.
However, this time is too long for regular performance testing. Relatively stable
results are available after 520 iterations, but this seems to be quite long time
as well, so a sensible value of warmup iterations is about 75. The results from
this point are not fully stable, but at least they are close to median of the values
(17 599 in this case).

Each benchmark have to be examined individually, because its behaviour
cannot be determined in advance. Goal is to find a balance between execution
time of the benchmark and precision (width of confidence interval) of the results.
Time and iteration based warmup settings are evenly good in our view, so which
one is used depends on consideration of the author. Multiple benchmarks can
share a configuration, but the warmup needs to be set as maximum warmup value
across them which can lengthen overall testing time. Also each testing computer
has different settings, for example a sensible value of warmup iterations for the
same benchmark on our other computer is 30.

The right warmup setting can change in development process, so we occa-
sionally recommend to verify the actual configuration. More advanced setup can
save all values and then determine and trim the warmup programmatically in

38

evaluator component, however this approach is more space consuming and our
evaluator engine is not fully prepared for this yet.

The conclusion for this experiment is that finding the right warmup settings
is easier when there is a plot of the data. The original configuration used by
the project developers does not use a long enough warmup, and we believe that
using our framework would lead to better configuration of the test from its very
beginning. Finally we summarize a few advices about benchmark configuration.

3.3 Regressions in Released Versions
The execution of performance tests is expensive, and the testing habits like fre-
quency or expected coverage taken from functional unit testing therefore do not
necessarily apply. One way to deal with this situation is to run regularly only
those tests that monitor the overall performance of the application. In case of
mustache.java, a good example is a test rendering a complex template. Only when
a regression is found, additional measurements of specific microbenchmarks can
be made to track down the root cause of the observed slowdown.

This experiment covers the first half of the process, that is, finding big re-
gressions in the performance of the whole application. All released versions (42
tagged Git commits) are chosen as measurement points. Since there is no suitable
existing test, a new JMH benchmark for rendering large and complex template
was written and evaluated against each version. The result of this experiment is
a list of versions that show a significant drop in performance compared against
their predecessor, backed by the plots from the visualization tool. The compar-
ison of performance is done both by evaluating SPL formulas and visually by
inspecting plots of all versions.

The new JMH test for rendering a mustache template is designed to be com-
plex and large enough to use most of the project features in suitable size. From
the total of 42 versions of mustache.java, only 36 are buildable with the new
test using the current tools on the testing computer. The failed ones are mostly
the oldest available versions. From the 36 buildable versions, 35 give nonempty
performance results, which are then used for further processing.

Our task is to find performance regressions, that is, versions that are slower
than their previous version. In long term testing process it is advisable to some-
times compare versions that are not adjacent. This evaluation can detect small
regressions that are not statistically significant when comparing only adjacent
versions. The SPL formula for two version comparison is simply newVersion <
oldVersion. The test is measuring throughput, hence higher value means faster
code. When this formula evaluates as true, we have a statistically significant
result that the newer version is slower that the older one. If the formula would
be changed to newVersion > oldVersion, we would get an indication when the
new version is faster, but an evaluation of the formula to false would be inter-
preted as there being no evidence that the new code is faster – it could be slower
or it could be as fast as the old version.

When evaluating a batch of formulas, it is impractical to write them as
annotations into the code, therefore a different method is used. From the
three possibilities (command-line formulas, file with formulas or annotation
meta formulas with a mapping file to real versions), command-line formulas

39

are used. For evaluating all the formulas we write a script that executes the
test with all pairs of versions newVersion and oldVersion under consideration
using the java -jar spl-evaluation-java-1.0.4.jar -c ’*:newVersion <
oldVersion’ command.

Having 35 data versions means there are 34 SPL formulas for evaluation.
The results show that exactly half of the formulas holds and the other half fails
(meaning that there was not enough statistical evidence to reject the opposite
formula). Versions that are statistically slower than their predecessor are 0.7.3,
0.7.4, 0.7.5, 0.7.9, 0.8.2, 0.8.4, 0.8.8, 0.8.9, 0.8.10, 0.8.12, 0.8.15, 0.8.17, 0.9.0,
0.9.1, 0.9.2, 0.9.3 and 0.9.5.

The formulas are only concerned with statistical significance, not with size of
effect – at this point, we therefore do not see how much the performance changed
between the stated versions. It may be a significant problem or just a minor
slowdown caused by newly added features. The graph presenting the performance
of all of the versions can be shown just by giving the -S command-line option
to the spl-evaluation-java instead of -c <formulas>. Multiple versions can be
loaded using the Advanced Load dialog which switches to box plot visualization
by default. The output is shown in Figure 3.3.

Figure 3.3: Performance characteristic of all versions sorted by release date. The
leftmost version is 0.7.0, the rightmost is 0.9.5. Three performance drops are
highlighted – slower versions are 0.7.3, 0.8.4 and 0.9.2. Legend is hidden to keep
the graph uncluttered.

The graph shows, that there are three bigger performance drops in history of
the project. The other changes are relatively small, for example the difference
between 0.9.4 and 0.9.5 (the last two versions) which can be caused only as
side effect of bigger code base or something not directly connected to a concrete
commit. On the other side the marked bigger changes have to have direct causes
which should be traced in Git history. An interesting observation is higher number
of outliers in the early versions compared to more recent measurements. A scatter

40

plot of one such version shows that the measurement values frequently alternate
between two clusters. This behavior changes in version 0.8.4 (purple box at index
14) – from there onward the data are more stable.

The results of this test show that the SPL evaluation engine can easily provide
alerts and point to a specific version which introduces a performance regression.
This could be automated in the testing pipeline of a project or simply executed
on demand by hand. One thing to improve is the evaluation of multiple formulas
across the performance data where an explicit invocation of the evaluation tool for
each of the formulas is needed. This requires writing a simple for-loop by hand
which could be somehow eliminated by the tool itself. However, a command-line
interface for specifying the versions, their ordering and SPL formulas per test
needs to be designed to fit easy-to-use interface of the tool.

The visualizing part of the tool does a useful work especially where all of the
version can be loaded and explored with only a few clicks. The tool runs fast
enough even after loading measurements for several tens of versions together into
one graph. This overview gives a practical insight of the performance history
over time. The discovered issues can examined in zoom or separately in different
graphs. A nice feature is also possibility to save graphs in SVG vector format. To
sum up, we find the visualizer to be a remarkably useful tool for understanding
performance characteristics of any project.

3.4 Tracking Down A Performance Issue
In the previous section, we have found several performance changes. We know
the overall performance of the complete project, however, we have no data about
the reasons behind the changes. This last experiment follows the previous one
by trying to determine what changes exactly are responsible for the observed
behavior. The results are judged by the complexity of the investigation steps,
including data collection and evaluation. A discussion about the quality of the
project benchmarks is also a part of the results.

3.4.1 Small Change Investigation
To localize the changes, more performance data with finer granularity are needed.
That implies testing performance of different pieces of the project on every change
in the code. We use JMH benchmarks provided by the project to track perfor-
mance between versions 0.9.2 and 0.9.3. This change is reported as statistically
significant slowdown by the evaluator, but the main boxplot shows that it is not
one of the three biggest performance drops. However, those changes are not cov-
ered with JMH tests which are initially available since version 0.9.1. Our choice
can be a nice study example because the selected version range is reasonably tight
and there are several commits with attempts to fix one particular bug.

Our investigation proceeds within an eleven-commit window, including the
release and merge commits. This effectively means that the performance changes
could be caused by one of only five commits, however for the completeness of our
results we focus on all eleven. The commits originate in two separate branches,
but both merge commits are fast-forward type so there is no interleaving and the

41

commits can be examined in a sequential manner. The version topology from Git
is shown in Listing 3.1.

1 * | 07349e4 (tag: mustache .java -0.9.3) [maven -release - plugin] prepare release mustache .java -0.9.3
2 * | eca08ca Merge pull request #173 from samfraser/bug_172 -Comments -not -valid -in - ExtendCode - block
3 |\ \
4 | |/
5 |/|
6 | * caa3a34 BUG -172: fix issue if there is a˜ comment in an ExtendCode block of a˜ mustache template,
7 | | the ExtendCode .init method fails with a˜ IllegalArgumentException .
8 | * 16550d3 BUG -172: fix issue if there is a˜ comment in an ExtendCode block of a˜ mustache template,
9 | | the ExtendCode .init method fails with a˜ IllegalArgumentException .

10 | * 936ba69 BUG -172: fix issue if there is a˜ comment in an ExtendCode block of a˜ mustache template,
11 | | the ExtendCode .init method fails with a˜ IllegalArgumentException .
12 | * 6d7225c BUG -172: fix issue if there is a˜ comment in an ExtendCode block of a˜ mustache template,
13 |/ the ExtendCode .init method fails with a˜ IllegalArgumentException .
14 * 8ac71b7 Merge pull request #170 from samfraser/bug_169 -partials -in -JARs -not - found
15 |\
16 | * e788eb3 BUG -169: fixed an issue with partials referenced using absolute path rather than relative
17 | | path not being found if they are in JAR files if the path contained a˜ double forward slash .
18 | | This was due to the ClasspathResolver .java putting a˜ forward slash at the end of the resourceRoot
19 | | in the constructor, so when a˜ resource was passed in with a˜ forward slash already appended to
20 |/ the front, the resulting path contains a˜ double forward slash .
21 * ac716e7 Updated to 0.9.2 release
22 * d883bbe [maven -release - plugin] prepare for next development iteration
23 * a14af1d (tag: mustache .java -0.9.2) [maven -release - plugin] prepare release mustache .java -0.9.2

Listing 3.1: Git topology of mustache.java project between versions 0.9.2 and
0.9.3.

We have checked out the project at each commit in selected range and add
jmh spl-maven-plugin to the build file. Then we build the project and execute
all of the six benchmarks using standard Maven command. To avoid previously
identified insufficient warmup, the values for each test are altered to use 5 forks,
100 warmup iterations and 100 measurement iterations. These values are identi-
fied as sufficient for all of the tests and have an acceptable duration for regular
performance measurements.

The first thing to try is the evaluation of SPL formulas testing the performance
drop separately for each test across all versions. The linear character of the
commits easily allows comparing two adjacent versions each time. The results in
Table 3.2 show that many formulas are evaluated as complying for some tests.
The examples of these cases appear also in the first, the second and the last
formula where the performance of the project remains the same, because these
commits do not change the actual code. This emphasizes that a positive formula
evaluation result does not necessarily mean any real performance change.

Performance of benchJustEscapeClean and benchJustEscapeTwo remains
the same because no commit in observed range changes HtmlEscaper class or
any of its dependencies. This statement holds for performance of the first bench-
mark, the second one indicates some variability of the results in the visualizer.
A deeper look into the individual versions shows that some of the forks are very
stable and others run slowly and unevenly. Our investigation shows that this is
primarily caused by empty NullWriter implementation which is affected with
code optimizations performed by the virtual machine. Our implementation using
Blackhole object from JMH evince slower, but much more stable results.

Another benchmark benchMustache renders a simple string template contain-
ing one loop. The results are quite stable, but every fork evince different values.
This is also caused by wrong implementation of NullWriter object. Overall per-
formance of the benchmark is similar for all versions except the one from the
commit that changed only the project readme.

The remaining three benchmarks target the performance of template com-
pilation and rendering of two small but non-trivial templates. The compilation

42

be
nc

hJ
us

tE
sc

ap
eC

le
an

be
nc

hJ
us

tE
sc

ap
eT

wo

be
nc

hM
us

ta
ch

e

te
st

Co
mp

il
at

io
n

te
st

Ex
ec

ut
io

n

te
st

Ti
me

li
ne

v-1465329679-a14af1d421ccd6bd17a4dfcec63bac1f6d9096f4 >
v-1465329685-d883bbeb200bb50ddd12f9ee1b2238794b401b54

V C V C V V

v-1465329685-d883bbeb200bb50ddd12f9ee1b2238794b401b54 >
v-1465337643-ac716e792e4183e33574cc4e9a81f6558dc07c5c

C V C V V V

v-1465337643-ac716e792e4183e33574cc4e9a81f6558dc07c5c >
v-1467639938-e788eb372f9329a9d07b1603c51e8a9aad776663

V V V V C C

v-1467639938-e788eb372f9329a9d07b1603c51e8a9aad776663 >
v-1467827803-8ac71b72a840a7debc676f1093b399030e25f8aa

V C C V C V

v-1467827803-8ac71b72a840a7debc676f1093b399030e25f8aa >
v-1467890766-6d7225c1e7c3b77c3a0f4441936de85769ac17e1

C V V C V C

v-1467890766-6d7225c1e7c3b77c3a0f4441936de85769ac17e1 >
v-1467894596-936ba693697601f2f0f857111402c31c6aaf7eeb

V V C V V V

v-1467894596-936ba693697601f2f0f857111402c31c6aaf7eeb >
v-1467896002-16550d3aeef037ccfb3bd684f8bbd80906eb635a

C C C C C V

v-1467896002-16550d3aeef037ccfb3bd684f8bbd80906eb635a >
v-1467896461-caa3a347148999ced14bdf72279edf4f568e61c3

V C V V V C

v-1467896461-caa3a347148999ced14bdf72279edf4f568e61c3 >
v-1468509942-eca08ca2bd58898310d302e63da185a568aee81a

V C C V C C

v-1468509942-eca08ca2bd58898310d302e63da185a568aee81a >
v-1468950957-07349e45399a160a75a8482f578347b8816b035b

C V C V C V

Table 3.2: Evaluation results of SPL formulas comparing commits between ver-
sions 0.9.2 and 0.9.3. The letter C stands for a positive result (complies), the
letter V stands for a negative result (violates).

benchmark exhibits similar performance in all versions. The performance of the
rendering benchmark is a bit different for each of the versions, but a deeper look
into the scatter plot shows stable fork results with disparate medians for each
invocation. This behaviour is similar to the benchJustEscapeTwo benchmark
which use the NullWriter class as well.

The observed commits attempt to fix two reported issues, #169 and #172
from GitHub. The first change fixes loading of JAR resources with absolute paths.
It could have a small performance impact on template rendering, however there
is no evidence of a bigger performance change. The second issue fixes a problem
with including subtemplates containing comments. There is one commit with the
new logic and three commits with debugging outputs and overall code polishing.
In this case there is no significant performance change as well.

Fixing both of the issues comes with new unit tests, but no performance
tests. It corresponds to the state of performance tests in this project as well as
general state in the open-source world. Performance tests of this project could
be extended to cover more of the code and to produce more stable data. We
find two serious issues with them – wrong implementation of the NullWriter
and wrong warmup configuration. To sum up we do not find any evidence of
performance change in observed range although SPL formula evaluator provides

43

statistically significant proof of performance drop. It means that SPL formulas
can detect really small performance changes which are caused by inaccuracy of
the measurement itself and we highly recommend to verify size of the change
prior deeper investigation.

3.4.2 Insight Into Bigger Performance Drops

In previous chapter we found three bigger performance drops between versions
0.7.2 – 0.7.3, 0.8.3 – 0.8.4 and 0.8.18 – 0.9.2. These version ranges are not covered
with JMH performance tests, so we cannot use the technique from the previous
section out of the box. Basically we have several options how to get insight into
performance of these versions:

• backport JMH tests from HEAD commit into each commit between the ver-
sion ranges, add JMH dependency to the project and measure all of the
commits,

• similar to previous, but use our new complex JMH test, which can be
backported to each commit more easily,

• try to manually find the issue and then just verify our assumption with the
complex JMH test.

We decided to go with the last option because it is the most suitable one
for projects which do not perform regular testing of every commit. Getting rel-
evant performance data at once would lead to possibly a few days of nonstop
measurements which is not acceptable. Selected solution could save a lot of time
to project developers, especially when they have a good insight into the code
or an idea what could cause the performance issue. If this approach fails then
measurement and evaluation of all of the commits could easily follow. Results
of this experiment are number of positive commit hits and a time how long we
investigate each issue.

Version 0.7.3

First we look into the performance issue between released versions 0.7.2 and 0.7.3.
This development iteration have 53 commits and some of the commit messages
indicates, that they may change performance. We label a few candidates for
measurement – commit bc489c3 which talks about a small performance regression
in its commit message, commit 85d4a25 which removes a concurrency and brings
more correctness and commit 7060cb5 which may bring back some of the lost
performance. This set of measurements is small enough to give us results in
reasonable time, so the developer can continue his work to evaluate the data and
possibly try to fix the performance issue.

However, we are not able to build these commits because of differences in
java.lang.CharSequence class in Java 1.6 and 1.8. This means that we cannot
verify the performance of these commits which implies that we cannot determine
the root of performance issue in version 0.7.3 of mustache.java. Our investigation
take about three quarters of an hour altogether.

44

Version 0.8.4

Development cycle between versions 0.8.3 and 0.8.4 takes 33 commits. We iden-
tified a few candidates for negative performance change – commit 07e0d32 which
adds BaseObjectHandler object extending a hierarchy of objects using reflection
by one level, commit a9a008b adding earlier flushing of output buffer and commit
06b01f0 enabling escaping of input text by default. We are not able to compile
these commits with our current setup, so we cannot verify our assumptions. We
spend about half an hour investigating this performance drop.

Version 0.9.2

The last of bigger performance drops is between versions 0.8.18 and 0.9.2, however
version 0.8.18 is just a minor fix after release of 0.9.X versions and in not merged to
master branch, so we use version 0.9.1 which also evince a noticeable performance
drop. In this development iteration there are 38 commits.

There are many commits which modifies the benchmarks. There are initial
JMH tests which go through a rapid development so their results would not give
us comparable values. The commit 4e0b75d adds more text symbols which need
to be escaped, but commit 1f35caf do an overall optimization of the escaping,
so we think that they do not cause any slowdown. Our candidates for causing the
performance issue are commits 657fd7a and 9d74cc9 which together implement
using custom immutable ArrayList class and use it in core components of the
project. These commits are just before 0.9.2 release, so to prove our hypothesis
we measure preceding commit 4e6e677 and the release commit a14af1d.

The measurements show that our assumptions are correct. The latter commit
is significantly slower than the first one and size of the change matches the size
of change between versions 0.9.1 and 0.9.2. The measurements are presented
in Figure 3.4. Results of our experiment implies the we successfully locate the
performance issue with only two measurements which noticeably improves the
time needed get useful details. The other option is to measure all commits in
observed range which would take more than four hours. For comparison, we
work on locating the performance change for about two hours.

Generally the performance issues are in versions that contains above average
number of commits from the previous release. Usually many of the commits
are irrelevant for performance changes, so there are only a few candidates for
further measurement. Investigating only these changes can improve overall time
to fix the issue or can provide a larger time window to allow deeper inspection of
the code. SPL evaluation engine and performance data visualizer helps to easily
understand the data, especially when executing more than one test.

45

Figure 3.4: Performance characteristic of commits 4e6e677 and a14af1d of the
mustache.java project. The measurements are in the throughput mode in ops/s
units.

46

Conclusion
We performed a comprehensive study of Java open-source projects with focus on
performance unit testing in the thesis. The results proved our expectation that
the unit testing of functionality is far more popular than the performance testing.
Despite the fact that suitable (micro)benchmarking tools exist, only a negligible
part of the projects is using any. More projects depend on custom proprietary
benchmarking, which often reveal poor quality.

A complementary developer survey provides an overview about the perfor-
mance testing workflow and gives us some ideas for the requested improvements.
Performance tests are often written only after a performance issue is discovered,
they are used just for fixing the issue and then they are no longer maintained.
A systematic testing is carried out by less than a half of addressed developers.

Major issues of performance unit tests are their bigger writing complexity
compared to unit tests of functionality and more difficult interpretation of the
results. To help eliminate the last issue, we created a custom tool aiming at
both the automatic and the manual interpretations of the results for small and
mid-sized projects with no custom testing infrastructure.

Performance tests themselves are left to be written in the JMH framework,
which is the only framework with a non-trivial usage numbers in the explored set
of projects. The framework is a part of OpenJDK and has an increasing user base
giving the project good credibility. The interpretation of the data is a respon-
sibility of the SPL framework, which validates formal performance assumptions
through statistical methods. Data visualization is handled by an interactive web
application using the React framework and the Plotly.js graphing library.

The final solution (one tool for both the formula evaluation and the visual-
ization plus the Maven plugin for integrating it with JMH-enabled projects) is
tested against a sample open-source project. The integration of the solution into
the selected project proved to be very easy and straightforward, same as was run-
ning JMH benchmarks via the Maven plugin and using the visualizer to display
the data. The SPL formula evaluator turns into a useful tool for comparison of
well designed benchmark data; however, it can produce false alarms for unsteady
benchmarks. This should be improved in the future development of the tool. In
general, the solution fulfils our expectations to extensively reduce the complexity
of data processing for the developers of Java projects.

Coming back to the statement in the title of this thesis, we hope that our
tool improves the expansion of performance awareness in Java projects; however,
one can hardly expect massive popularity anytime soon. An adoption of regular
performance testing is a slow process where the developers need to get used to the
tools and the way of processing the results gradually. Doubtless, it is a pleasure
to contribute to the movement towards making better and faster software.

47

48

Bibliography
[1] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically Rigor-

ous Java Performance Evaluation. In Proceedings of the 22Nd Annual ACM
SIGPLAN Conference on Object-Oriented Programming Systems and Appli-
cations, OOPSLA ’07, pages 57–76, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-786-5. doi: 10.1145/1297027.1297033.

[2] D. G. Feitelson, E. Frachtenberg, and K. L. Beck. Development and Deploy-
ment at Facebook. IEEE Internet Computing, 17(4):8–17, July 2013. ISSN
1089-7801. doi: 10.1109/MIC.2013.25.

[3] Paul Brebner. Thoughts on the ABS Census website crash on census
night (9 August 2016). http://www.performance-assurance.com.au/
thoughts-on-the-abs-census-website-crash-on-census-night-9-
august-2016/.

[4] John D. McGregor. Test early, test often. The Journal of Object Technology,
6(4):7, 2007. ISSN 1660-1769. doi: 10.5381/jot.2007.6.4.c1.

[5] V. K. Myalapalli and S. Geloth. High performance JAVA programming. In
2015 International Conference on Pervasive Computing (ICPC), pages 1–6,
January 2015. doi: 10.1109/PERVASIVE.2015.7087004.

[6] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Sime-
oni. Model-Based Performance Prediction in Software Development: A Sur-
vey. IEEE Trans. Softw. Eng., 30(5):295–310, May 2004. ISSN 0098-5589.
doi: 10.1109/TSE.2004.9.

[7] Andreas Ehliar and Dake Liu. Benchmarking network processors. In Swedish
System-on-Chip Conference, 2004.

[8] Elaine J. Weyuker and Filippos I. Vokolos. Experience with Performance
Testing of Software Systems: Issues, an Approach, and Case Study. IEEE
Trans. Softw. Eng., 26(12):1147–1156, December 2000. ISSN 0098-5589. doi:
10.1109/32.888628.

[9] Murray Woodside, Greg Franks, and Dorina C. Petriu. The Future of Soft-
ware Performance Engineering. In 2007 Future of Software Engineering,
FOSE ’07, pages 171–187, Washington, DC, USA, 2007. IEEE Computer
Society. ISBN 978-0-7695-2829-8. doi: 10.1109/FOSE.2007.32.

[10] Ermira Daka and Gordon Fraser. A Survey on Unit Testing Practices and
Problems. In Proceedings of the 2014 IEEE 25th International Symposium
on Software Reliability Engineering, ISSRE ’14, pages 201–211, Washington,
DC, USA, 2014. IEEE Computer Society. ISBN 978-1-4799-6033-0. doi:
10.1109/ISSRE.2014.11.

[11] Antoaneta Baltadzhieva and Grzegorz Chrupa\la. Question Quality in Com-
munity Question Answering Forums: A Survey. SIGKDD Explor. Newsl., 17
(1):8–13, September 2015. ISSN 1931-0145. doi: 10.1145/2830544.2830547.

49

http://www.performance-assurance.com.au/thoughts-on-the-abs-census-website-crash-on-census-night-9-august-2016/
http://www.performance-assurance.com.au/thoughts-on-the-abs-census-website-crash-on-census-night-9-august-2016/
http://www.performance-assurance.com.au/thoughts-on-the-abs-census-website-crash-on-census-night-9-august-2016/

[12] John Wilmar Castro Llanos and Silvia Teresita Acuña Castillo. Differences
Between Traditional and Open Source Development Activities. In Proceed-
ings of the 13th International Conference on Product-Focused Software Pro-
cess Improvement, PROFES’12, pages 131–144, Berlin, Heidelberg, 2012.
Springer-Verlag. ISBN 978-3-642-31062-1. doi: 10.1007/978-3-642-31063-
8 11.

[13] G. Kick, C. Decker, and P. Duffin. Caliper: Micro-benchmarking library for
Java. https://github.com/google/caliper, February 2018.

[14] Petr Stefan, Vojtech Horky, Lubomir Bulej, and Petr Tuma. Unit Testing
Performance in Java Projects: Are We There Yet? In Proceedings of the
8th ACM/SPEC on International Conference on Performance Engineering,
ICPE ’17, pages 401–412, New York, NY, USA, 2017. ACM. ISBN 978-1-
4503-4404-3. doi: 10.1145/3030207.3030226.

[15] Nachiappan Nagappan, E. Michael Maximilien, Thirumalesh Bhat, and
Laurie Williams. Realizing Quality Improvement Through Test Driven
Development: Results and Experiences of Four Industrial Teams. Em-
pirical Softw. Engg., 13(3):289–302, June 2008. ISSN 1382-3256. doi:
10.1007/s10664-008-9062-z.

[16] Boby George and Laurie Williams. An Initial Investigation of Test Driven
Development in Industry. In Proceedings of the 2003 ACM Symposium on
Applied Computing, SAC ’03, pages 1135–1139, New York, NY, USA, 2003.
ACM. ISBN 978-1-58113-624-1. doi: 10.1145/952532.952753.

[17] Per Runeson. A Survey of Unit Testing Practices. IEEE Software, 23(4):
22–29, July 2006. ISSN 0740-7459. doi: 10.1109/MS.2006.91.

[18] Emelie Engström and Per Runeson. A Qualitative Survey of Regression
Testing Practices. In Proceedings of the 11th International Conference on
Product-Focused Software Process Improvement, PROFES’10, pages 3–16,
Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 978-3-642-13791-4. doi:
10.1007/978-3-642-13792-1 3.

[19] M. Greiler, A. van Deursen, and M. A. Storey. Test confessions: A study of
testing practices for plug-in systems. In 2012 34th International Conference
on Software Engineering (ICSE), pages 244–254, June 2012. doi: 10.1109/
ICSE.2012.6227189.

[20] Wolfgang Gottesheim. Challenges, Benefits and Best Practices of Perfor-
mance Focused DevOps. In Proceedings of the 4th International Workshop
on Large-Scale Testing, LT ’15, pages 3–3, New York, NY, USA, 2015. ACM.
ISBN 978-1-4503-3337-5. doi: 10.1145/2693182.2693187.

[21] Johannes Kroß, Felix Willnecker, Thomas Zwickl, and Helmut Krcmar.
PET: Continuous Performance Evaluation Tool. In Proceedings of the 2Nd
International Workshop on Quality-Aware DevOps, QUDOS 2016, pages
42–43, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4411-1. doi:
10.1145/2945408.2945418.

50

https://github.com/google/caliper

[22] Jürgen Walter, André van Hoorn, Heiko Koziolek, Dusan Okanovic, and
Samuel Kounev. Asking ”What”?, Automating the ”How”?: The Vision of
Declarative Performance Engineering. In Proceedings of the 7th ACM/SPEC
on International Conference on Performance Engineering, ICPE ’16, pages
91–94, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4080-9. doi:
10.1145/2851553.2858662.

[23] Jan Waller, Nils C. Ehmke, and Wilhelm Hasselbring. Including Perfor-
mance Benchmarks into Continuous Integration to Enable DevOps. SIG-
SOFT Softw. Eng. Notes, 40(2):1–4, April 2015. ISSN 0163-5948. doi:
10.1145/2735399.2735416.

[24] Philipp Leitner and Cor-Paul Bezemer. An Exploratory Study of the State
of Practice of Performance Testing in Java-Based Open Source Projects. In
Proceedings of the 8th ACM/SPEC on International Conference on Perfor-
mance Engineering, ICPE ’17, pages 373–384, New York, NY, USA, 2017.
ACM. ISBN 978-1-4503-4404-3. doi: 10.1145/3030207.3030213.

[25] Lubomı́r Bulej, Tomáš Bureš, Jaroslav Keznikl, Alena Koubková, Andrej
Podzimek, and Petr Tůma. Capturing Performance Assumptions Using
Stochastic Performance Logic. In Proceedings of the 3rd ACM/SPEC In-
ternational Conference on Performance Engineering, ICPE ’12, pages 311–
322, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1202-8. doi:
10.1145/2188286.2188345.

[26] Vojtěch Horký, Peter Libič, Lukáš Marek, Antonin Steinhauser, and Petr
Tůma. Utilizing Performance Unit Tests To Increase Performance Aware-
ness. In Proceedings of the 6th ACM/SPEC International Conference on
Performance Engineering, ICPE ’15, pages 289–300, New York, NY, USA,
2015. ACM. ISBN 978-1-4503-3248-4. doi: 10.1145/2668930.2688051.

[27] André de Camargo, Ivan Salvadori, Ronaldo dos Santos Mello, and Frank
Siqueira. An Architecture to Automate Performance Tests on Microservices.
In Proceedings of the 18th International Conference on Information Inte-
gration and Web-Based Applications and Services, iiWAS ’16, pages 422–
429, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4807-2. doi:
10.1145/3011141.3011179.

[28] P. Vogel, T. Klooster, V. Andrikopoulos, and M. Lungu. A Low-Effort Ana-
lytics Platform for Visualizing Evolving Flask-Based Python Web Services.
In 2017 IEEE Working Conference on Software Visualization (VISSOFT),
pages 109–113, September 2017. doi: 10.1109/VISSOFT.2017.13.

[29] André van Hoorn, Jan Waller, and Wilhelm Hasselbring. Kieker: A Frame-
work for Application Performance Monitoring and Dynamic Software Anal-
ysis. In Proceedings of the 3rd ACM/SPEC International Conference on
Performance Engineering, ICPE ’12, pages 247–248, New York, NY, USA,
2012. ACM. ISBN 978-1-4503-1202-8. doi: 10.1145/2188286.2188326.

51

[30] Augusto Born de Oliveira, Jean-Christophe Petkovich, Thomas Reidemeis-
ter, and Sebastian Fischmeister. DataMill: Rigorous Performance Evaluation
Made Easy. In Proceedings of the 4th ACM/SPEC International Conference
on Performance Engineering, ICPE ’13, pages 137–148, New York, NY, USA,
2013. ACM. ISBN 978-1-4503-1636-1. doi: 10.1145/2479871.2479892.

[31] B. L. Welch. The Generalization of ‘Student’s’ Problem When Several Dif-
ferent Population Varlances Are Involved. Biometrika, 34(1-2):28–35, 1947.
doi: 10.1093/biomet/34.1-2.28.

[32] H. B. Mann and D. R. Whitney. On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other. The Annals of Mathemat-
ical Statistics, 18(1):50–60, March 1947. ISSN 0003-4851, 2168-8990. doi:
10.1214/aoms/1177730491.

52

List of Abbreviations
CI Continuous Integration

GPG GNU Privacy Guard

IDE Integrated Development Environment

IQR Interquartile Range

JAR Java Archive

JIT Just-In-Time (Compilation)

JMH Java Microbenchmark Harness

JVM Java Virtual Machine

OS Operating System

Q&A Questions and Answers

REST Representational State Transfer

RRD Round Robin Database

SCSV Semicolon Separated Values

SOAP Simple Object Access Protocol

SPL Stochastic Performance Logic

VCS Version Control System

VM Virtual Machine

53

54

A. JMH Usage Survey
1. For what purpose do you use JMH in your projects?

Check all that apply.

• Benchmarks to learn performance of system or libraries
• Benchmarks to learn performance of project code
• Comparative benchmarks between alternatives
• Other: . . .

2. Why did you choose JMH over other frameworks?
Check all that apply.

• Well documented
• Actively maintained
• Trust the results most
• Easy integration with build system
• Do not know other similar tools
• Other: . . .

3. Do you run the JMH benchmarks regularly?
Either as part of continuous integration or similar technique or as part of
your quality assurance process.
Mark only one.

• Yes
• No
• Other: . . .

4. Are the benchmark results processed and evaluated automatically?
Mark only one.

• Yes (automatically processed and anomalies reported)
• Yes (automatically plotted and manually inspected)
• No (only manual inspection)
• Other: . . .

5. How systematically in general do you test performance in your project?
Mark only one.

• 1 (Rigorous and regular testing)
• 2
• 3

55

• 4
• 5 (Only incidental testing)

6. Did you ever act on performance test results?
Mark only one.

• Yes, I find regressions or improvements regularly
• Yes, I make design decisions based on test results
• Yes, but the tests report interesting results only rarely
• No, never found any bug with the performance tests
• Other: . . .

7. What level of performance testing would you want in the development pro-
cess?
Mark only one.

• I would like to have regular performance tests run with every commit
• I would like to run performance tests before every release
• I prefer user reports to own performance tests
• Other: . . .

8. What would help you utilize performance tests more in your development
process?
Check all that apply.

• Simpler performance test implementation environment
• Tighter integration with build infrastructure
• More automated result evaluation
• More time or budget to run the tests
• Other: . . .

9. When do you update (add, delete, refactor) your performance tests?
Mark only one.

• Only when fixing or evaluating performance issues
• Regularly, same as any other code
• Just before a release is due
• Other: . . .

10. Anything else
Space for your comments on JMH, performance testing or any other
thoughts that crossed your mind when completing this survey.

11. Using your answers
Mark only one, required.

56

• I agree with using my answers in both an overall summary and for
possible anonymous quoting

• I agree with using my answers in an overall summary but do not quote
me

• I only agree with private use of my answers

12. Contact
Fill in your e-mail address if you wish to be notified of the results. This
mail will not be used for any other purpose.

57

58

B. User Documentation
The purpose of our framework is to help Java developers with performance testing.
The solution provides these main features:

• run JMH benchmarks through Maven,
• store benchmark results in standard structure and format, using Git meta-

data when possible,
• evaluate SPL formulas against saved data to find statistically significant

performance changes,
• interactively visualize the data in a web browser.

Basic knowledge of benchmarking and JMH is a prerequisite for understanding
the following text. The expected skills also include the basics of Java and Maven
build system. For running our examples and compiling the tools, we expect Java
(version at least 1.8.0) and Maven (version at least 3.5.0) installed if not specified
otherwise.

B.1 Quick Start
This section provides a simple tutorial that covers the creation of a new project,
integration with Maven, benchmarking and processing the data. More elaborated
descriptions of the individual steps can be found in one of the following sections,
dedicated to individual components.

Set up a new JMH project

First, we generate a new JMH project from the Maven archetype:

$ mvn archetype:generate \
-DinteractiveMode=false \
-DarchetypeGroupId=org.openjdk.jmh \
-DarchetypeArtifactId=jmh-java-benchmark-archetype \
-DgroupId=org.sample \
-DartifactId=test \
-Dversion=1.0

The project is initialized in the test/ folder, which becomes our new working
directory. To write a sample benchmark, replace the code of the testMethod()
from the src/main/java/org/sample/MyBenchmark.java file with the new con-
tent (ignoring imports for simplicity):

1 @Benchmark
2 @BenchmarkMode (Mode. Throughput)
3 @OutputTimeUnit (TimeUnit . SECONDS)
4 public void measureThroughput () throws InterruptedException {
5 TimeUnit . MILLISECONDS .sleep (100);
6 }

59

Now we create a local Git repository and commit the initial state:

$ git init
$ git add .
$ git commit -m "Initial version"

Add the Maven plugin and run the benchmark

Now, we add our custom Maven plugin into the project. To achieve this, add the
following snippet into the <plugins> section of the pom.xml file:

1 <plugin >
2 <groupId >cz.cuni.mff.d3s.spl </ groupId >
3 <artifactId >jmh_spl -maven - plugin </ artifactId >
4 <version >1.0.4 </ version >
5 <executions >
6 <execution >
7 <goals >
8 <goal >evaluator_fetcher </goal >
9 <goal >data_saver </goal >

10 </ goals >
11 </ execution >
12 </ executions >
13 </ plugin >

After this, we can start benchmarking simply by executing the mvn clean
install command. When it is finished, a new directory called measurements/
is created in the project directory, containing one JAR file, and, in the data/
subdirectory, a version directory with a single JSON data file – for example:

./data/v-1522435282-3308f81b97820f826bc522c8bbbb60a1fe10965c-
dirty/1522435657.json

Reduce code performance and run the benchmark again

To simulate a performance regression in the tested code, we modify the bench-
mark to sleep a longer period of time. The new benchmark method body is
TimeUnit.MILLISECONDS.sleep(120);. Then we commit the changes and run
the benchmark again:

$ git commit -a -m "Worse performance"
$ mvn clean install

Evaluate a SPL formula to find regression

Our benchmark is set to throughput mode, so higher values mean better per-
formance. Generally, it is desired that newer versions are not slower than older
ones. This can be translated to a SPL formula saying “older version is faster
than newer version” and a positive answer means that a performance problem is
found.

60

The formula can be evaluated calling the spl-evaluation-java tool with the
formula as an argument:

$ java -jar measurements/spl-evaluation-java-1.0.4.jar -c \
"org.sample.MyBenchmark.measureThroughput: \
v-1522435282-3308f81b97820f826bc522c8bbbb60a1fe10965c-dirty > \
V-1522437046-5105cd589ec92684d6f7ca27d477b9aba17e17e7"

Benchmark: org.sample.MyBenchmark.measureThroughput@thrpt
formula: v-1522435282-3308f81b97820f826bc522c8bbbb60a1fe\

10965c-dirty > v-1522437046-5105cd589ec92684d6f\
7ca27d477b9aba17e17e7

result: COMPLIES

The result is positive, the performance drop is statistically confirmed.

Run the visualizer and browse the data

Now we want to display the data to visually inspect the size of the performance
change. The visualizer is started with this command:

$ java -jar measurements/spl-evaluation-java-1.0.4.jar -S

The default web browser is opened when graphics environment is available.
The data can be loaded into the graph from the left menu or via the Advanced
Load button.

The example shows a complete testing workflow on a simple project, but the
usage pattern is similar even for much bigger projects. For existing projects it is
critical to integrate JMH framework, after that using presented Maven plugin is
a matter of couple minutes.

B.2 Maven Plugin

Our Maven plugin provides an easy integration of the benchmarks based on
JMH with our SPL evaluation engine and data visualizer. It is available from
the Maven Central Repository with groupId cz.cuni.mff.d3s.spl and artifactId
jmh spl-maven-plugin, hence it can be automatically fetched during the Maven
build process.

The plugin has four goals, each enabling different functionality. They can be
used together or in an arbitrary combination to suit specific needs of the target
project. Each goal can be specified as a separate <execution> section in pom.xml
or all of them can share one common section with multiple <goal> items.

The following code snippet shows the base template which is extended by the
<execution> section(s) of the used plugin goals.

61

1 <plugin >
2 <groupId >cz.cuni.mff.d3s.spl </ groupId >
3 <artifactId >jmh_spl -maven - plugin </ artifactId >
4 <version >1.0.4 </ version >
5 <executions >
6 ...
7 </ executions >
8 </ plugin >

B.2.1 The Data Saver Goal
The data saver goal handles the saving of the measured data generated from
the benchmarks.jar in JSON format into a configured directory with a custom
revision identifier. In the default configuration, this goal is executed in the Maven
verify phase, because that follows the package phase where the benchmarks.jar
file is created.

The following snippet fits into the base plugin configuration template and
enables the data saver goal:

1 <execution >
2 <id>Generate data </id>
3 <goals >
4 <goal >data_saver </goal >
5 </goals >
6 </ execution >

There are several configuration options modifying the behaviour of this plugin
goal. These options can be specified from the command-line with a property
identifier or from the pom.xml file. The properties start with the data saver.
prefix which is ommited in the table.

pom.xml property default value description

revisionID revision id v-<timestamp>-<id>
where <id> is default
or HEAD revision from
Git and <timestamp>
current or HEAD unix
timestamp

Identifier of current re-
vision used to construct
data path. Existing data
for this revision id will
remain untouched.

jmhJar benchmarks jar ${project.build.
directory}/${uber-
jar.name}.jar

Path to benchmarks.jar
generated by the JMH
build.

resultPath result path ${project.basedir}/
measurements/data

Path to the directory
where are measured data
in JSON format stored.
Will be created if absent.

additionalOpts additional options "" Arguments that will
be passed directly to
the benchmarks.jar
while executing. For
example "-v SILENT
-foe true".

skip skip false Skip goal execution.

62

Multiple measurements with the same version identifier are possible, the iden-
tifier determines the directory name, the actual measurements are stored as files
with names derived from the current timestamp. For Git enabled projects the ver-
sion identifier is determined from the repository metadata. Executing measure-
ments of only some of the tests is possible via the additional options property
where fully qualified test name is given as the last argument. For more informa-
tion, refer to the JMH documentation.

Examples of the command-line and the pom.xml configuration usage:

$ mvn clean install -Ddata_saver.revision_id=ver3

1 <configuration >
2 <jmhJar >
3 ${ project .build. directory }/${ uberjar .name }. jar
4 </ jmhJar >
5 <resultPath >${ project . basedir }/ measurements </ resultPath >
6 </ configuration >

B.2.2 The SPL Annotation Goal
The SPL annotation goal is used to install the @SPLFormula annotation, which is
used for attaching SPL formulas to benchmarks. It can be attached to a bench-
mark method or to a class, affecting all of its methods. The default Maven execu-
tion phase is generate-sources. The generated SPLFormula.java file is copied to
the target/generated-sources/spl annotations/cz/cuni/mff/d3s/spl di-
rectory. The compilation CLASSPATH is altered to include this directory. This
plugin requires no configuration.

The pom.xml snippet for including this target in the base plugin configuration
template:

1 <execution >
2 <id>Provide SPL annotation </id>
3 <goals >
4 <goal >spl_annotation </goal >
5 </goals >
6 </ execution >

B.2.3 The SPL Extractor Goal
The SPL extractor goal finds the @SPLFormula annotations in source code files,
parses them and saves the formulas into the META-INF/SPLFormulas file, which
is included in the final benchmark.jar. The default Maven execution phase is
compile. The file format is line based – benchmark name:SPL formula. This
plugin requires no configuration.

The pom.xml snippet for including this target in the base plugin configuration
template:

63

1 <execution >
2 <id>Parse SPL annotation from sources </id>
3 <goals >
4 <goal >formula_extractor </goal >
5 </goals >
6 </ execution >

B.2.4 The Evaluator Fetcher Goal
The evaluator fetcher goal downloads the spl-evaluation-java1 JAR from the
Maven Central Repository and saves it into the directory containing the per-
formance data (measurements/ by default). The JAR contains command-line
application providing the SPL formula evaluation engine and the performance
data visualizer. The default Maven build cycle is verify.

The pom.xml snippet for including this target in the base plugin configuration
template:

1 <execution >
2 <id>Fetch evaluator </id>
3 <goals >
4 <goal >evaluator_fetcher </goal >
5 </goals >
6 </ execution >

The configuration properties of this goal are described in the following table.
The properties start with the data saver. prefix which is ommited in the table.

pom.xml property default value description

evaluatorVersion version 1.0.4 Version of the down-
loaded JAR.

evaluatorSaveDir save dir ${project.basedir}/
measurements

The directory where the
JAR is stored. Created
if absent.

B.2.5 Compilation
The plugin can be compiled from source by executing the mvn clean install
command from the cloned Git repository. The compiled JAR file is in the target/
directory of the project. Note that correct GPG configuration of Maven may be
required to create signed builds.

B.3 SPL Formula Evaluator
The SPL formula evaluator project implements a tool for evaluating SPL formulas
against performance data. This tool is used to determine whether performance
assumptions on a set of collected measurement data are correct.

1http://repo1.maven.org/maven2/cz/cuni/mff/d3s/spl/spl-evaluation-java/1.0.
4/spl-evaluation-java-1.0.4.jar

64

http://repo1.maven.org/maven2/cz/cuni/mff/d3s/spl/spl-evaluation-java/1.0.4/spl-evaluation-java-1.0.4.jar
http://repo1.maven.org/maven2/cz/cuni/mff/d3s/spl/spl-evaluation-java/1.0.4/spl-evaluation-java-1.0.4.jar

B.3.1 Console Interface
The evaluator is managed through a console interface with several command-line
options. A quick help is printed on errors (for example when no argument is
given):
usage: spl-evaluation-java [-c <formulas>] [-d <data_directory>] [-f

<formula_file>] [-j <benchmarks.jar>] [-p] [-r <mapping_file>] [-S]
Evaluate measured data against SPL formulas.
-c,--commandline-formulas <formulas> Read SPL formulas from command-line

arguments.
-d,--data-dir <data_directory> Path to directory with measured

data.
-f,--file-formulas <formula_file> Read SPL formulas from text file.
-j,--jar-formulas <benchmarks.jar> Read SPL formulas from JAR file.
-p,--print-unknown Print unknown revisions and exit.
-r,--revision-mapping <mapping_file> Mapping of formula revisions to

file names.
-S,--server Run API server and visualizer

Each SPL formula is bound to one benchmark. The formulas can be specified
in three ways – inside the benchmarks.jar package (collected from the source
code annotations), in a text file, or directly on command-line. The formulas are
parsed in this order, latter formula has higher priority and overrides any previous
benchmark formula.

• benchmarks.jar – formulas are saved in the META-INF/SPLFormulas file,
formatted as benchmark name:formula. This file is generated using the
Maven plugin (jmh spl-maven-plugin) from the @SPLFormula annotations.

• text file – a simple text file formatted as benchmark name:formula
• command-line arguments – list of pairs benchmark name:formula separated

by space. Note that enclosing each value into quotes may be required be-
cause of shell argument parsing. To denote all all benchmarks, use * as the
benchmark name.

The data-dir option specifies the path to main directory with measurement
data. It can be omitted for default settings, which make the tool look for the
data/ directory in the same base path as the JAR itself. The print-unknown
option enables a mode that print versions mentioned in SPL formulas but not
present in the measured data or transitively in the custom mapping of revisions.
No evaluation is performed. The revision-mapping option reads a plain text file
with colon-separated values of custom revision and actual measured data revision
name. Each line contains one mapping, empty rows or rows starting with the #
are ignored. The server option runs a web server for the API and the visualizer,
listening on address http://0.0.0.0:42000. Index.html is the main locator
for the visualizer, the API endpoints are on their URLs according to the API
documentation.

Example console usage:
$ java -jar spl-evaluation-java.jar -d ./demo-data/jmh \

-r /tmp/mapping.txt -j ./target/benchmarks.jar \
-c "cz.stdin.ps.MyBenchmark.testMethod:last < ver2" \
"cz.stdin.ps.MyBenchmark.methodTwo:ver1 < base"

65

http://0.0.0.0:42000

B.3.2 Library
This project can also be used as a library, providing the SPL evaluation engine
functionality over arbitrary data. Examples of how to use it this way are located
in the src/demo/ directory, where is located a separate pom.xml file to build them.
Note that the parent project have to be installed in the local Maven repository
prior to building the demo (using the mvn clean install command).

Two prepared scenarios can be run directly from Maven:

• mvn exec:java@regression-tester
• mvn exec:java@sensitivity-comparison

B.3.3 Documentation
The reference documentation can be generated using the mvn clean site com-
mand. The JavaDoc-generated html provides code documentation, basic informa-
tion about usage of the spl evaluation engine, unit test reports and other project
metadata. The documentation is generated in the target/site/ directory.

The SPL formalism is originally created for performance unit testing, more
information is available at the SPL for Java page2 of the Department of Dis-
tributed and Dependable Systems (Faculty of Mathematics and Physics, Charles
University in Prague)3.

B.3.4 Compilation
A standalone compilation is triggered with the mvn clean package command,
for compilation with JAR creation use the mvn clean install command. All
of the generated files are stored in the target/ directory, including the main
spl-evaluation-java-1.0.4.jar file. The attached unit tests can be compiled
and executed by running the mvn test command.

The data visualizer functionality needs the compiled files of the performance
data visualizer project in the src/main/resources/cz/cuni/mff/d3s/spl/vi-
sualization directory before building the SPL evaluation engine. Linux systems
can use the build visualizer.sh script from the project root that install the
visualizer files into the project resources (all the necessary tools for building the
visualizer need to be installed otherwise the build will fail).

B.4 Perf Data Visualizer
The Perf Data Visualizer is a multiplatform visualizer of performance data de-
signed to support various data formats. It uses a REST API to fetch the list
of measurements, their metadata and their actual values. The tool is written in
JavaScript using the ECMAScript 6 specification and the React framework. The
graph visualization engine comes from the Plotly.js project.

The visualizer project is normally a part of the spl-evaluation-java package,
but it can also be used as a standalone web application. It should work in most
modern web browsers, the tested ones are Firefox 59 and Chrome 65.

2http://d3s.mff.cuni.cz/software/spl-java
3http://d3s.mff.cuni.cz/

66

http://d3s.mff.cuni.cz/software/spl-java
http://d3s.mff.cuni.cz/

B.4.1 Interface and Functions
The visualizer is a single page web application designed for desktop usage. The
structure of the interface is shown in the following picture:

1. Button toolbar. These buttons serve to switch the display mode of box 2
and initiate advanced loading of multiple data versions. The advanced load
button shows a modal dialog (shown in the next picture) with a select box
for the benchmark name and three columns for three different loading styles
– all available versions, the last N versions where N is a given integer, and
versions newer than X where X is a given date.

2. A searchable list of tests or versions. The default representation shows the
test items, with each item being expandable to show the sublist of available
versions for that test. When the display is switched to the versions mode,
the sublist for each version contains the available tests. Each sublist item
contains a button to load or remove the associated data for visualization.
Clicking on a top-level list item in the tests display mode shows a table
containing the test metadata above box 4 (an example metadata table is in
the following picture).

67

3. Custom graph controls. This set of controls provides additional configura-
tion for graph visualization. The following controls are available:

• Max bins (only for histogram mode) – The maximum count of his-
togram bins. This value is used in the algorithm calculating the actual
number of bins, a change in this value therefore may not be immedi-
ately reflected in the graph.

• Hide legend – A check box for hiding the legend, useful when many
versions are loaded.

• Split runs – A check box for rendering all benchmark runs over each
other instead of concatenating them.

• Type – A select box for the graph type. Currently three options are
available: a scatter plot, a histogram and a box plot.

• Save – A button for saving the rendered graph in a vector format
(SVG).

4. Graphing area. This area is rendered by the Plotly.js graphing library with
all of its features. It provides interactive zooming, moving the data, showing
values on hover and more.

5. Loaded data manager. This box shows the currently loaded and visualized
data. When more than three versions are loaded, the box is scrollable. Each
of the versions can be unloaded by clicking the red cross on its right side,
the trash bin icon near the right border removes all loaded versions.

B.4.2 Graphing Area

The Perf Data Visualizer is designed to be a suitable tool for various applications
of visualizing performance data. The interactive nature of the tool implies that
the graph cannot easily have all of the formal requisites like a title, exact labels
with units, etc. The axis labels can be deduced from the graph type, but for
example the units of measurements are missing, because every loaded test or
version can use different units. This problem is solved by displaying the units for
each data sample separately in a box on mouse hover.

The scatter plot shows the measured values, preserving the order of measure-
ment. The X axis shows the sequential order of the measured value, the Y axis
gives the value itself. This is the default graph type.

68

The histogram shows the measured values grouped by the count of their oc-
curence. The X axis shows the measured values, the Y axis indicates the number
of occurrences of that value (or value range) in the input data. The style depends
on the number of bins rendered. This mode is useful mostly for JMH sample time
mode, where the order of the samples is not preserved.

The box plots are intended for comparison of multiple versions of the same
benchmark. The X axis shows individual tests or versions, the Y axis plots the
measured values. For each test or version, a box shows multiple statistics about
the data:

• the middle line represents the median
• the top and bottom sides of the rectangle represent the 1st and the 3rd

quartile
• the whiskers (solid vertical lines extending from the rectangle) represent the

interquartile range, the top whisker is the largest value under Q3 + 1.5 *
IQR, the bottom whisker is the lowest value over Q1 – 1.5 * IQR

• any data outside the whisker range is considered to be outliers, represented
by dots in the graph

B.4.3 Compilation
The project is managed by the Yarn dependency manager4 and bootstrapped
with Create React App5. The compilation process consists of several steps:

1. Installing dependencies through the yarn install command,
2. Editing the .env file and setting the REACT APP API BASE variable to point

to the API base URL, and
3. Building the production files with the yarn build command.

The output files are generated in the build/ directory and can be served by
any web server as static files.

When developing the app, a debug mode server is started with the yarn start
command. A custom web server listens on http://localhost:3000. The unit
tests can be started with the yarn test command.

B.5 Practical Tips
We present some tips and recommentations for the measurements and usage of
the framework in general in this section. They are certainly not valid for all
possible use-cases, so each of the tips has to be considered before its application
to the target project.

1. Generate benchmarking project from the JMH Maven archetype. Not all of
the JMH dependencies are obvious, so use a Maven module when you add
benchmarks to an existing project.

4https://yarnpkg.com/lang/en/
5https://github.com/facebook/create-react-app

69

http://localhost:3000
https://yarnpkg.com/lang/en/
https://github.com/facebook/create-react-app

2. When you desire to check the performance of a single benchmark in the
middle of the development process you can specify its full name as the last
argument in additional options passed to JMH (for example -Ddata saver.
additional options="org.package.MyBenchmark" from the command-
line). Multiple measurements are saved as the same version, but you can
compare them as separate runs from the visualizer. Another option is to
use different result paths or revision ids for such temporary measurements.

3. The measurements/ directory inside the project root is not meant to be
versioned. It contains the JAR of our evaluator and the possibly big perfor-
mance data. Since the data are bound to the exact computer configuration
the only reason for sharing them is the visualization. For this, we recom-
mend to set a server containing the data and running a webserver proxying
the requests to the local visualizer. Note, that this server should not be
used for the measurements because the webserver may negatively affect the
precision of the measurements.

4. The unit testing of functionality and the performance testing are different.
With the former we try to cover the code as much as possible to avoid non-
tested spots with potential bugs. Adding more performance tests highly
affects the overall testing time and brings more data that are hard to cor-
rectly evaluate. We recommend to regularly run just a few of high-level
tests and make more detailed measurement only when an issue is found.

70

C. Visualizer API
This is API documentation of Performance Data Visualizer.

Version: 1.0.0
BasePath:/
MIT license

C.1 Methods
• GET /tests
• GET /tests/{testId}/revisions
• GET /tests/{testId}/revisions/{revisionId}/data

C.2 Description
GET /tests

List of all available measurements (benchmarks)
Get list of all measurements which have at least one data version in a config-

ured datastore. Each item contains required and optional metadata (for example
all metadata from JMH output, such as number of iterations or benchmarking
mode). Optional metadata are served as key-value pairs.

Return type

array[Test]

Example data

Content-Type: application/json

[{
"metadata" : {

"key" : "metadata"
},
"name" : "cz.stdin.ps.SampleTest.testMethod",
"id" : "id"

}, {
"metadata" : {

"key" : "metadata"
},
"name" : "cz.stdin.ps.SampleTest.testMethod",
"id" : "id"

}]

71

Produces

This API call produces the following media types according to the Accept request
header; the media type will be conveyed by the Content-Type response header.

• application/json

Responses

200 Success

500 Internal server error

GET /tests/{testId}/revisions

List of different measurement versions in specific test
Returns list of different measurements for specific test. The versions are re-

turned from oldest to newest according to version timestamp. If the timestamps
matches, resulting order is from lexicographical comparison of version ids.

Path parameters

• testId (required) – ID of test (one of id fields from /tests endpoint)

Return type

array[Version]

Example data

Content-Type: application/json

[{
"id" : "1501159669-7649a1c363f58f732b0503130ea93f0ef0719e15",
"timestamp" : 1501159669

}, {
"id" : "1501159669-7649a1c363f58f732b0503130ea93f0ef0719e15",
"timestamp" : 1501159669

}]

Produces

This API call produces the following media types according to the Accept request
header; the media type will be conveyed by the Content-Type response header.

• application/json

Responses

200 Success

72

404 Test not found

500 Internal server error

GET /tests/{testId}/revisions/{revisionId}/data

Get data for specific test and version

Path parameters

• testId (required) – ID of test (one of id fields from /tests endpoint)

• revisionId (required) – ID of measurement version (one of the values re-
turned from /tests/${testId}/revisions endpoint)

Return type

Data

Example data

Content-Type: application/json

{
"data" : [[18268.275199999567, 18268.275199999567],

[18268.275199999567, 18268.275199999567]],
"units" : "ns/op"

}

Produces

This API call produces the following media types according to the Accept request
header; the media type will be conveyed by the Content-Type response header.

• application/json

Responses

200 Success Data

404 Version or test not found

500 Internal server error

73

C.3 Models

Data
• units String – Units of values (the same for all)

• data (optional) array[array[Double]] – Values separated by distinct mea-
surements (for example JMH forks – different JVM instances).

Test
• id String – Unique identifier of this test case

• name String – Name of test case, usually full method name

• metadata (optional) map[String, String] – Optional test metadata (execu-
tion parameters, etc.)

Version
• id String – Unique version identifier, usually creation time of measured

commit. The used format is Unix timestamp (number of seconds elapsed
since January 1, 1970). If the timestamp is unknown, 0 is returned.

• timestamp Long – Version timestamp, usually creation time of measured
commit. Used format is Unix timestamp (number of seconds elapsed since
January 1, 1970). If the timestamp is unknown, 0 is returned.

74

D. Reviewer Demo
This appendix presents a quick starting guide for the reviewer of this thesis.
The electronic attachment of the thesis contains a demonstration JMH project
in a local Git repository. The project already have some benchmarks and a few
performance measurements which can be immediately examined. We require Java
at least 1.8 and Maven at least 3.5.0 to be installed.

1. Download the electronic attachment of the thesis, unzip it and open a ter-
minal inside the reviewer demo/ directory.

2. Run the performance data visualizer and browse through the data. From
the terminal run:

$ java -jar measurements/spl-evaluation-java-1.0.4.jar -S

The visualizer opens in the default web browser at http://localhost:
42000/index.html. We recommend to compare all versions of the
measureDoubleLog benchmark together and then add any version of the
measureSingleLog. The change is caused by wrong implementation of the
first benchmark which is fixed in the 8e89c2e commit.

3. When finished, stop the visualizer server by hitting Ctrl + C in the termi-
nal.

4. The benchmarks.jar file contains SPL formulas for the benchmarks. We
can print them and find if any of the versions are missing. From the terminal
run:

$ java -jar measurements/spl-evaluation-java-1.0.4.jar \
-j target/benchmarks.jar -p

The result is that the formulas contain version other which is unknown in
the measured data.

5. Bind the other version to a specific measurement and evaluate the formu-
las. The version mapping is prepared in the file measurements/version
mapping.txt file, so the evaluation is started from the terminal as follows:

$ java -jar measurements/spl-evaluation-java-1.0.4.jar \
-j target/benchmarks.jar -r measurements/version_mapping.txt

The formulas are now successfully evaluated. Two of them violate, one
complies.

6. Run the measurements with a custom version identifier:

$ mvn clean install -Ddata_saver.revision_id=reviewerTest

Omiting the argument would result into another measurement for the last
Git version (requires Git to be installed).

7. These are the basics. More details are in the user documentation and the
text of the thesis.

75

http://localhost:42000/index.html
http://localhost:42000/index.html

76

	Introduction
	Analysis
	Unit Testing of Functionality
	JUnit
	TestNG

	Practice of Unit Testing
	Performance Testing
	Caliper
	ContiPerf
	Japex
	JMH
	JUnitPerf

	Practice of Performance Testing
	GitHub Statistics
	Developer Survey
	Survey Results

	Goals Revisited
	Related Work

	Tools Design
	Performance Tests
	Storing Data
	Testing Performance Changes
	Data Visualization
	Client
	Server

	Practical Validation
	Ease of Integration
	Test Configuration
	Regressions in Released Versions
	Tracking Down A Performance Issue
	Small Change Investigation
	Insight Into Bigger Performance Drops

	Conclusion
	Bibliography
	List of Abbreviations
	Appendix JMH Usage Survey
	Appendix User Documentation
	Quick Start
	Maven Plugin
	The Data Saver Goal
	The SPL Annotation Goal
	The SPL Extractor Goal
	The Evaluator Fetcher Goal
	Compilation

	SPL Formula Evaluator
	Console Interface
	Library
	Documentation
	Compilation

	Perf Data Visualizer
	Interface and Functions
	Graphing Area
	Compilation

	Practical Tips

	Appendix Visualizer API
	Methods
	Description
	Models

	Appendix Reviewer Demo

